A study of positioning orientation effect on segmentation accuracy using convolutional neural networks for rectal cancer

Purpose Convolutional neural networks (CNN) have greatly improved medical image segmentation. A robust model requires training data can represent the entire dataset. One of the differing characteristics comes from variability in patient positioning (prone or supine) for radiotherapy. In this study,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied clinical medical physics 2019-01, Vol.20 (1), p.110-117
Hauptverfasser: Men, Kuo, Boimel, Pamela, Janopaul‐Naylor, James, Cheng, Chingyun, Zhong, Haoyu, Huang, Mi, Geng, Huaizhi, Fan, Yong, Plastaras, John P., Ben‐Josef, Edgar, Xiao, Ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose Convolutional neural networks (CNN) have greatly improved medical image segmentation. A robust model requires training data can represent the entire dataset. One of the differing characteristics comes from variability in patient positioning (prone or supine) for radiotherapy. In this study, we investigated the effect of position orientation on segmentation using CNN. Methods Data of 100 patients (50 in supine and 50 in prone) with rectal cancer were collected for this study. We designed three sets of experiments for comparison: (a) segmentation using the model trained with data from the same orientation; (b) segmentation using the model trained with data from the opposite orientation; (c) segmentation using the model trained with data from both orientations. We performed fivefold cross‐validation. The performance was evaluated on segmentation of the clinical target volume (CTV), bladder, and femurs with Dice similarity coefficient (DSC) and Hausdorff distance (HD). Results Compared with models trained on cases positioned in the same orientation, the models trained with cases positioned in the opposite orientation performed significantly worse (P  0.05). The average DSC values were 0.74 vs 0.84, 0.85 vs 0.88, and 0.91 vs 0.91 for CTV, bladder, and femurs, respectively. The corresponding HD values (mm) were 16.6 vs 14.6, 8.4 vs 8.1, and 6.3 vs 6.3, respectively. The models trained with data from both orientations have comparable accuracy (P > 0.05), with average DSC of 0.84, 0.88, and 0.91 and HD of 14.4, 8.1, and 6.3, respectively. Conclusions Orientation affects the accuracy for CTV and bladder, but has negligible effect on the femurs. The model trained from data combining both orientations performs as well as a model trained with data from the same orientation for all the organs. These observations can offer guidance on the choice of training data for accurate segmentation.
ISSN:1526-9914
1526-9914
DOI:10.1002/acm2.12494