High-Throughput Stability Screening of Neoantigen/HLA Complexes Improves Immunogenicity Predictions
Mutated peptides (neoantigens) from a patient's cancer genome can serve as targets for T-cell immunity, but identifying which peptides can be presented by an MHC molecule and elicit T cells has been difficult. Although algorithms that predict MHC binding exist, they are not yet able to distingu...
Gespeichert in:
Veröffentlicht in: | Cancer immunology research 2019-01, Vol.7 (1), p.50-61 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Mutated peptides (neoantigens) from a patient's cancer genome can serve as targets for T-cell immunity, but identifying which peptides can be presented by an MHC molecule and elicit T cells has been difficult. Although algorithms that predict MHC binding exist, they are not yet able to distinguish experimental differences in half-lives of the complexes (an immunologically relevant parameter, referred to here as kinetic stability). Improvement in determining actual neoantigen peptide/MHC stability could be important, as only a small fraction of peptides in most current vaccines are capable of eliciting CD8
T-cell responses. Here, we used a rapid, high-throughput method to experimentally determine peptide/HLA thermal stability on a scale that will be necessary for analysis of neoantigens from thousands of patients. The method combined the use of UV-cleavable peptide/HLA class I complexes and differential scanning fluorimetry to determine the T
values of neoantigen complexes. Measured T
values were accurate and reproducible and were directly proportional to the half-lives of the complexes. Analysis of known HLA-A2-restricted immunogenic peptides showed that T
values better correlated with immunogenicity than algorithm-predicted binding affinities. We propose that temperature stability information can be used as a guide for the selection of neoantigens in cancer vaccines in order to focus attention on those mutated peptides with the highest probability of being expressed on the cell surface. |
---|---|
ISSN: | 2326-6066 2326-6074 |
DOI: | 10.1158/2326-6066.cir-18-0395 |