The ribosomal maturation factor P from Mycobacterium smegmatis facilitates the ribosomal biogenesis by binding to the small ribosomal protein S12
The ribosomal maturation factor P (RimP) is a highly conserved protein in bacteria and has been shown to be important in ribosomal assembly in Escherichia coli. Because of its central importance in bacterial metabolism, RimP represents a good potential target for drug design to combat human pathogen...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2019-01, Vol.294 (1), p.372-378 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The ribosomal maturation factor P (RimP) is a highly conserved protein in bacteria and has been shown to be important in ribosomal assembly in Escherichia coli. Because of its central importance in bacterial metabolism, RimP represents a good potential target for drug design to combat human pathogens such as Mycobacterium tuberculosis. However, to date, the only RimP structure available is the NMR structure of the ortholog in another bacterial pathogen, Streptococcus pneumoniae. Here, we report a 2.2 Å resolution crystal structure of MSMEG_2624, the RimP ortholog in the close M. tuberculosis relative Mycobacterium smegmatis, and using in vitro binding assays, we show that MSMEG_2624 interacts with the small ribosomal protein S12, also known as RpsL. Further analyses revealed that the conserved residues in the linker region between the N- and C-terminal domains of MSMEG_2624 are essential for binding to RpsL. However, neither of the two domains alone was sufficient to form strong interactions with RpsL. More importantly, the linker region was essential for in vivo ribosomal biogenesis. Our study provides critical mechanistic insights into the role of RimP in ribosome biogenesis. We anticipate that the MSMEG_2624 crystal structure has the potential to be used for drug design to manage M. tuberculosis infections. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.RA118.002298 |