Microfluidic Mobility Shift Profiling of Lysine Acetyltransferases Enables Screening and Mechanistic Analysis of Cellular Acetylation Inhibitors

Lysine acetyltransferases (KATs) are critical regulators of signaling in many diseases, including cancer. A major challenge in establishing the targetable functions of KATs in disease is a lack of well-characterized, cell-active KAT inhibitors. To confront this challenge, here we report a microfluid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS chemical biology 2016-03, Vol.11 (3), p.734-741
Hauptverfasser: Sorum, Alexander W, Shrimp, Jonathan H, Roberts, Allison M, Montgomery, David C, Tiwari, Neil K, Lal-Nag, Madhu, Simeonov, Anton, Jadhav, Ajit, Meier, Jordan L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lysine acetyltransferases (KATs) are critical regulators of signaling in many diseases, including cancer. A major challenge in establishing the targetable functions of KATs in disease is a lack of well-characterized, cell-active KAT inhibitors. To confront this challenge, here we report a microfluidic mobility shift platform for the discovery and characterization of small molecule KAT inhibitors. Novel fluorescent peptide substrates were developed for four well-known KAT enzymes (p300, Crebbp, Morf, and Gcn5). Enzyme-catalyzed acetylation alters the electrophoretic mobility of these peptides in a microfluidic chip, allowing facile and direct monitoring of KAT activity. A pilot screen was used to demonstrate the utility of microfluidic mobility shift profiling to identify known and novel modulators of KAT activity. Real-time kinetic monitoring of KAT activity revealed that garcinol, a natural product KAT inhibitor used in cellular studies, exhibits time-dependent and detergent-sensitive inhibition, consistent with an aggregation-based mechanism. In contrast, the cell-permeable bisubstrate inhibitor Tat-CoA exhibited potent and time-independent KAT inhibition, highlighting its potential utility as a cellular inhibitor of KAT activity. These studies define microfluidic mobility shift profiling as a powerful platform for the discovery and characterization of small molecule inhibitors of KAT activity, and provide mechanistic insights potentially important for the application of KAT inhibitors in cellular contexts.
ISSN:1554-8929
1554-8937
DOI:10.1021/acschembio.5b00709