Enhanced lubrication on tissue and biomaterial surfaces through peptide-mediated binding of hyaluronic acid
Lubrication is key for the efficient function of devices and tissues with moving surfaces, such as articulating joints, ocular surfaces and the lungs. Indeed, lubrication dysfunction leads to increased friction and degeneration of these systems. Here, we present a polymer–peptide surface coating pla...
Gespeichert in:
Veröffentlicht in: | Nature materials 2014-10, Vol.13 (10), p.988-995 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Lubrication is key for the efficient function of devices and tissues with moving surfaces, such as articulating joints, ocular surfaces and the lungs. Indeed, lubrication dysfunction leads to increased friction and degeneration of these systems. Here, we present a polymer–peptide surface coating platform to non-covalently bind hyaluronic acid (HA), a natural lubricant in the body. Tissue surfaces treated with the HA-binding system exhibited higher lubricity values, and
in vivo
were able to retain HA in the articular joint and to bind ocular tissue surfaces. Biomaterials-mediated strategies that locally bind and concentrate HA could provide physical and biological benefits when used to treat tissue-lubricating dysfunction and to coat medical devices.
A polymer–peptide surface coating that non-covalently binds the natural lubricant hyaluronic acid (HA) is shown to enhance the lubricity of tissue surfaces and to retain HA in articular joints and on ocular tissue surfaces
in vivo
. |
---|---|
ISSN: | 1476-1122 1476-4660 |
DOI: | 10.1038/nmat4048 |