A Novel Biodegradable and Thermosensitive Poly(Ester-Amide) Hydrogel for Cartilage Tissue Engineering

Thermosensitive hydrogels are attractive alternative scaffolding materials for minimally invasive surgery through a simple injection and in situ gelling. In this study, a novel poly(ester-amide) polymer, methoxy poly(ethylene glycol)-poly(pyrrolidone-co-lactide) (mPDLA, P3L7) diblock copolymer, was...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BioMed research international 2018-01, Vol.2018 (2018), p.1-12
Hauptverfasser: Chu, I-Ming, Cheng, Po-Yuan, Wei, Yu Hong, Fu, Tsai-Sheng, Chen, Wei-Chuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Thermosensitive hydrogels are attractive alternative scaffolding materials for minimally invasive surgery through a simple injection and in situ gelling. In this study, a novel poly(ester-amide) polymer, methoxy poly(ethylene glycol)-poly(pyrrolidone-co-lactide) (mPDLA, P3L7) diblock copolymer, was synthesized and characterized for cartilage tissue engineering. A series of amphiphilic diblock copolymers was synthesized by ring-opening polymerization of mPEG 550, D,L-lactide, and 2-pyrrolidone. By dynamic light scattering analysis and tube-flipped-upside-down method, viscoelastic properties of the mPDLA diblock copolymer solution exhibited sol-gel transition behavior as a function of temperature. An in vitro degradation assay showed that degradation acidity was effectively reduced by introducing the 2-pyrrolidone monomer into the polyester hydrogel. Besides, mPDLA exhibited great biocompatibility in vitro for cell encapsulation due to a high swelling ratio. Moreover, cell viability and biochemical analysis proved that the mPDLA hydrogel presented a great chondrogenic response. Taken together, these results demonstrate that mPDLA hydrogels are promising injectable scaffolds potentially applicable to cartilage tissue engineering.
ISSN:2314-6133
2314-6141
DOI:10.1155/2018/2710892