Ontogenetic trajectories of body coloration reveal its function as a multicomponent nonsenescent signal

The understanding of developmental patterns of body coloration is challenging because of the multicomponent nature of color signals and the multiple selective pressures acting upon them, which further depend on the sex of the bearer and area of display. Pigmentary colors are thought to be strongly i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecology and evolution 2018-12, Vol.8 (24), p.12299-12307
Hauptverfasser: Bonnaffé, Willem, Martin, Mélissa, Mugabo, Marianne, Meylan, Sandrine, Le Galliard, Jean‐François
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The understanding of developmental patterns of body coloration is challenging because of the multicomponent nature of color signals and the multiple selective pressures acting upon them, which further depend on the sex of the bearer and area of display. Pigmentary colors are thought to be strongly involved in sexual selection, while structural colors are thought to generally associate with conspecifics interactions and improve the discrimination of pigmentary colors. Yet, it remains unclear whether age dependency in each color component is consistent with their potential function. Here, we address lifelong ontogenetic variation in three color components (i.e. UV, pigmentary, and skin background colors) in a birth cohort of common lizards Zootoca vivipara across three ventral body regions (i.e. throat, chest, and belly). All three color components developed sexual dichromatism, with males displaying stronger pigmentary and UV colors but weaker skin background coloration than females. The development of color components led to a stronger sexual dichromatism on the concealed ventral region than on the throat. No consistent signs of late‐life decay in color components were found except for a deceleration of UV reflectance increase with age on the throat of males. These results suggest that body color components in common lizards are primarily nonsenescent sexual signals, but that the balance between natural and sexual selection may be altered by the conspicuousness of the area of display. These results further support the view that skin coloration is a composite trait constituted of multiple color components conveying multiple signals depending on age, sex, and body location. Body color is a complex trait due to sexual, regional, and developmental variation. Identifying its function is challenging because one has to account jointly for these sources of variation. Using a lifelong census of color measurement of a cohort of lizards, we show that color develops differently between sexes and body area and is maintained at older ages. Hence, body color conveys multiple signals that may further change throughout the lifespan of individuals.
ISSN:2045-7758
2045-7758
DOI:10.1002/ece3.4369