Ocean deoxygenation and zooplankton: Very small oxygen differences matter

Oxygen minimum zones (OMZs), large midwater regions of very low oxygen, are expected to expand as a result of climate change. While oxygen is known to be important in structuring midwater ecosystems, a precise and mechanistic understanding of the effects of oxygen on zooplankton is lacking. Zooplank...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2018-12, Vol.4 (12), p.eaau5180-eaau5180
Hauptverfasser: Wishner, K F, Seibel, B A, Roman, C, Deutsch, C, Outram, D, Shaw, C T, Birk, M A, Mislan, K A S, Adams, T J, Moore, D, Riley, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Oxygen minimum zones (OMZs), large midwater regions of very low oxygen, are expected to expand as a result of climate change. While oxygen is known to be important in structuring midwater ecosystems, a precise and mechanistic understanding of the effects of oxygen on zooplankton is lacking. Zooplankton are important components of midwater food webs and biogeochemical cycles. Here, we show that, in the eastern tropical North Pacific OMZ, previously undescribed submesoscale oxygen variability has a direct effect on the distribution of many major zooplankton groups. Despite extraordinary hypoxia tolerance, many zooplankton live near their physiological limits and respond to slight (≤1%) changes in oxygen. Ocean oxygen loss (deoxygenation) may, thus, elicit major unanticipated changes to midwater ecosystem structure and function.
ISSN:2375-2548
2375-2548
DOI:10.1126/sciadv.aau5180