Determining the Pathogenicity of a Genomic Variant of Uncertain Significance Using CRISPR/Cas9 and Human-Induced Pluripotent Stem Cells

BACKGROUND:The progression toward low-cost and rapid next-generation sequencing has uncovered a multitude of variants of uncertain significance (VUS) in both patients and asymptomatic “healthy” individuals. A VUS is a rare or novel variant for which disease pathogenicity has not been conclusively de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circulation (New York, N.Y.) N.Y.), 2018-12, Vol.138 (23), p.2666-2681
Hauptverfasser: Ma, Ning, Zhang, Joe Z, Itzhaki, Ilanit, Zhang, Sophia L, Chen, Haodong, Haddad, Francois, Kitani, Tomoya, Wilson, Kitchener D, Tian, Lei, Shrestha, Rajani, Wu, Haodi, Lam, Chi Keung, Sayed, Nazish, Wu, Joseph C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:BACKGROUND:The progression toward low-cost and rapid next-generation sequencing has uncovered a multitude of variants of uncertain significance (VUS) in both patients and asymptomatic “healthy” individuals. A VUS is a rare or novel variant for which disease pathogenicity has not been conclusively demonstrated or excluded, and thus cannot be definitively annotated. VUS, therefore, pose critical clinical interpretation and risk-assessment challenges, and new methods are urgently needed to better characterize their pathogenicity. METHODS:To address this challenge and showcase the uncertainty surrounding genomic variant interpretation, we recruited a “healthy” asymptomatic individual, lacking cardiac-disease clinical history, carrying a hypertrophic cardiomyopathy (HCM)-associated genetic variant (NM_000258.2:c.170C>A, NP_000249.1:p.Ala57Asp) in the sarcomeric gene MYL3, reported by the ClinVar database to be “likely pathogenic.” Human-induced pluripotent stem cells (iPSCs) were derived from the heterozygous VUSMYL3(170C>A) carrier, and their genome was edited using CRISPR/Cas9 to generate 4 isogenic iPSC lines(1) corrected “healthy” control; (2) homozygous VUSMYL3(170C>A); (3) heterozygous frameshift mutation MYL3; and (4) known heterozygous MYL3 pathogenic mutation (NM_000258.2:c.170C>G), at the same nucleotide position as VUSMYL3(170C>A), lines. Extensive assays including measurements of gene expression, sarcomere structure, cell size, contractility, action potentials, and calcium handling were performed on the isogenic iPSC-derived cardiomyocytes (iPSC-CMs). RESULTS:The heterozygous VUSMYL3(170C>A)-iPSC-CMs did not show an HCM phenotype at the gene expression, morphology, or functional levels. Furthermore, genome-edited homozygous VUSMYL3(170C>A)- and frameshift mutation MYL3-iPSC-CMs lines were also asymptomatic, supporting a benign assessment for this particular MYL3 variant. Further assessment of the pathogenic nature of a genome-edited isogenic line carrying a known pathogenic MYL3 mutation, MYL3(170C>G), and a carrier-specific iPSC-CMs line, carrying a MYBPC3(961G>A) HCM variant, demonstrated the ability of this combined platform to provide both pathogenic and benign assessments. CONCLUSIONS:Our study illustrates the ability of clustered regularly interspaced short palindromic repeats/Cas9 genome-editing of carrier-specific iPSCs to elucidate both benign and pathogenic HCM functional phenotypes in a carrier-specific manner in a dish. As such, this pla
ISSN:0009-7322
1524-4539
DOI:10.1161/CIRCULATIONAHA.117.032273