TOR and RPS6 transmit light signals to enhance protein translation in deetiolating Arabidopsis seedlings

Deetiolation is an essential developmental process transforming young plant seedlings into the vegetative phase with photosynthetic activities. Light signals initiate this important developmental process by triggering massive reprogramming of the transcriptome and translatome. Compared with the weal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2018-12, Vol.115 (50), p.12823-12828
Hauptverfasser: Chen, Guan-Hong, Liu, Ming-Jung, Xiong, Yan, Sheen, Jen, Wu, Shu-Hsing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Deetiolation is an essential developmental process transforming young plant seedlings into the vegetative phase with photosynthetic activities. Light signals initiate this important developmental process by triggering massive reprogramming of the transcriptome and translatome. Compared with the wealth of knowledge of transcriptional regulation, the molecular mechanism underlying this light-triggered translational enhancement remains unclear. Here we show that light-enhanced translation is orchestrated by a light perception and signaling pathway composed of photoreceptors, CONSTITUTIVE PHOTOMORPHOGENESIS 1 (COP1), the phytohormone auxin, target of rapamycin (TOR), and ribosomal protein S6 (RPS6). In deetiolating Arabidopsis seedlings, photoreceptors, including phytochrome A and cryptochromes, perceive far-red and blue light to inactivate the negative regulator COP1, which leads to activation of the auxin pathway for TOR-dependent phosphorylation of RPS6. Arabidopsis mutants defective in TOR, RPS6A, or RPS6B exhibited delayed cotyledon opening, a characteristic of the deetiolating process to ensure timely vegetative development of a young seedling. This study provides a mechanistic view of light-triggered translational enhancement in deetiolating Arabidopsis.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.1809526115