Power, false discovery rate and Winner's Curse in eQTL studies
Abstract Investigation of the genetic architecture of gene expression traits has aided interpretation of disease and trait-associated genetic variants; however, key aspects of expression quantitative trait loci (eQTL) study design and analysis remain understudied. We used extensive, empirically driv...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 2018-12, Vol.46 (22), p.e133-e133 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Investigation of the genetic architecture of gene expression traits has aided interpretation of disease and trait-associated genetic variants; however, key aspects of expression quantitative trait loci (eQTL) study design and analysis remain understudied. We used extensive, empirically driven simulations to explore eQTL study design and the performance of various analysis strategies. Across multiple testing correction methods, false discoveries of genes with eQTLs (eGenes) were substantially inflated when false discovery rate (FDR) control was applied to all tests and only appropriately controlled using hierarchical procedures. All multiple testing correction procedures had low power and inflated FDR for eGenes whose causal SNPs had small allele frequencies using small sample sizes (e.g. frequency 25%). Overestimation of eQTL effect sizes, so-called 'Winner's Curse', was common in low and moderate power settings. To address this, we developed a bootstrap method (BootstrapQTL) that led to more accurate effect size estimation. These insights provide a foundation for future eQTL studies, especially those with sampling constraints and subtly different conditions. |
---|---|
ISSN: | 0305-1048 1362-4962 |
DOI: | 10.1093/nar/gky780 |