Standing Surface Acoustic Wave (SSAW)‐Based Fluorescence‐Activated Cell Sorter

Microfluidic fluorescence‐activated cell sorters (μFACS) have attracted considerable interest because of their ability to identify and separate cells in inexpensive and biosafe ways. Here a high‐performance μFACS is presented by integrating a standing surface acoustic wave (SSAW)‐based, 3D cell‐focu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2018-10, Vol.14 (40), p.e1801996-n/a
Hauptverfasser: Ren, Liqiang, Yang, Shujie, Zhang, Peiran, Qu, Zhiguo, Mao, Zhangming, Huang, Po‐Hsun, Chen, Yuchao, Wu, Mengxi, Wang, Lin, Li, Peng, Huang, Tony Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Microfluidic fluorescence‐activated cell sorters (μFACS) have attracted considerable interest because of their ability to identify and separate cells in inexpensive and biosafe ways. Here a high‐performance μFACS is presented by integrating a standing surface acoustic wave (SSAW)‐based, 3D cell‐focusing unit, an in‐plane fluorescent detection unit, and an SSAW‐based cell‐deflection unit on a single chip. Without using sheath flow or precise flow rate control, the SSAW‐based cell‐focusing technique can focus cells into a single file at a designated position. The tight focusing of cells enables an in‐plane‐integrated optical detection system to accurately distinguish individual cells of interest. In the acoustic‐based cell‐deflection unit, a focused interdigital transducer design is utilized to deflect cells from the focused stream within a minimized area, resulting in a high‐throughput sorting ability. Each unit is experimentally characterized, respectively, and the integrated SSAW‐based FACS is used to sort mammalian cells (HeLa) at different throughputs. A sorting purity of greater than 90% is achieved at a throughput of 2500 events s−1. The SSAW‐based FACS is efficient, fast, biosafe, biocompatible and has a small footprint, making it a competitive alternative to more expensive, bulkier traditional FACS. Miniaturization and integration of a fluorescence‐activated cell sorter is achieved by using standing surface acoustic waves for both cell focusing and deflection, and using integrated optical fibers for detection. The small‐footprint standing surface acoustic wave‐based fluorescence‐activated cell sorter demonstrates high throughput, biocompatibility, biosafety, and accuracy.
ISSN:1613-6810
1613-6829
DOI:10.1002/smll.201801996