PI3K‐AKT‐FOXO1 pathway targeted by skeletal muscle microRNA to suppress proteolytic gene expression in response to carbohydrate intake during aerobic exercise

Ingesting protein and carbohydrate together during aerobic exercise suppresses the expression of specific skeletal muscle microRNA and promotes muscle hypertrophy. Determining whether there are independent effects of carbohydrate and protein on microRNA will allow for a clearer understanding of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physiological reports 2018-12, Vol.6 (23), p.e13931-n/a
Hauptverfasser: Margolis, Lee M., Berryman, Claire E., Murphy, Nancy E., Carrigan, Christopher T., Young, Andrew J., Carbone, John W., Pasiakos, Stefan M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ingesting protein and carbohydrate together during aerobic exercise suppresses the expression of specific skeletal muscle microRNA and promotes muscle hypertrophy. Determining whether there are independent effects of carbohydrate and protein on microRNA will allow for a clearer understanding of the mechanistic role microRNA serve in regulating skeletal muscle protein synthetic and proteolytic responses to nutrition and exercise. This study determined skeletal muscle microRNA responses to aerobic exercise with or without carbohydrate, and recovery whey protein (WP). Seventeen males were randomized to consume carbohydrate (CHO; 145 g; n = 9) or non‐nutritive control (CON; n = 8) beverages during exercise. Muscle was collected before (BASE) and after 80 min of steady‐state exercise (1.7 ± 0.3 V̇O2 L·min−1) followed by a 2‐mile time trial (17.9 ± 3.5 min; POST), and 3‐h into recovery after consuming WP (25 g; REC). RT‐qPCR was used to determine microRNA and mRNA expression. Bioinformatics analysis was conducted using the mirPath software. Western blotting was used to assess protein signaling. The expression of six microRNA (miR‐19b‐3p, miR‐99a‐5p, miR‐100‐5p, miR‐222‐3p, miR‐324‐3p, and miR‐486‐5p) were higher (P 
ISSN:2051-817X
DOI:10.14814/phy2.13931