Structure–property relationships for 3D-printed PEEK intervertebral lumbar cages produced using fused filament fabrication

Recent advances in the additive manufacturing technology now enable fused filament fabrication of polyetheretherketone (PEEK). A standardized lumbar fusion cage design was 3D printed with different speeds of the printhead nozzle to investigate whether 3D-printed PEEK cages exhibit sufficient materia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials research 2018-07, Vol.33 (14), p.2040-2051
Hauptverfasser: Basgul, Cemile, Yu, Tony, MacDonald, Daniel W., Siskey, Ryan, Marcolongo, Michele, Kurtz, Steven M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2051
container_issue 14
container_start_page 2040
container_title Journal of materials research
container_volume 33
creator Basgul, Cemile
Yu, Tony
MacDonald, Daniel W.
Siskey, Ryan
Marcolongo, Michele
Kurtz, Steven M.
description Recent advances in the additive manufacturing technology now enable fused filament fabrication of polyetheretherketone (PEEK). A standardized lumbar fusion cage design was 3D printed with different speeds of the printhead nozzle to investigate whether 3D-printed PEEK cages exhibit sufficient material properties for lumbar fusion applications. It was observed that the compressive and shear strength of the 3D-printed cages were 63–71% of the machined cages, whereas the torsion strength was 92%. The printing speed is an important printing parameter for 3D-printed PEEK, which resulted in up to 20% porosity at the highest speed of 3000 mm/min, leading to reduced cage strength. Printing speeds below 1500 mm/min can be chosen as the optimal printing speed for this printer to reduce the printing time while maintaining strength. The crystallinity of printed PEEK did not differ significantly from the as-machined PEEK cages from extruded rods, indicating that the processing provides similar microstructure.
doi_str_mv 10.1557/jmr.2018.178
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6289530</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_jmr_2018_178</cupid><sourcerecordid>2845639709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c580t-94184de222a859297696a638b2ccebb81f9021fdd343624025ab214370c785843</originalsourceid><addsrcrecordid>eNqFkUtrFTEYhoNY7Gl151oCblx0jrlPshFKPVZpQUFdh0wmM81hbiaTQsGF_8F_6C8x03OsF1BX-SBP3rwfDwCPMVpjzsvn2z6sCcJyjUt5D6wIYqzglIj7YIWkZAVRmB2Coxi3CGGOSvYAHFLEOScYrcDn93NIdk7BffvydQrj5MJ8A4PrzOzHIV75KcJmDJC-LKbgh9nV8N1mcwGXMVxn2FXBdLBLfWUCtKZ1EeaYOtlMpuiHFjYp5rnxnendMMPGVMHb2_iH4KAxXXSP9ucx-Phq8-HsdXH59vzN2ellYblEc6EYlqx2hBAjuSKqFEoYQWVFrHVVJXGjEMFNXVNGBWGIcFMRzGiJbCm5ZPQYvNjlTqnqXW1zjVxa54V6E270aLz-_WbwV7odr7UgUnGKcsCzfUAYPyUXZ937aF3XmcGNKWqCeSm4JFJm9Okf6HZMYcjraSIZF1SVSP2TQqUQinO89D7ZUTaMMQbX3FXGSC_ydZavF_k6y8_4k1_XvIN_2M5AsQPi4rJ14eevfwlc7_83fZZWt-4_D74DPoDK5w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076695514</pqid></control><display><type>article</type><title>Structure–property relationships for 3D-printed PEEK intervertebral lumbar cages produced using fused filament fabrication</title><source>Springer Nature - Complete Springer Journals</source><source>Cambridge University Press Journals Complete</source><creator>Basgul, Cemile ; Yu, Tony ; MacDonald, Daniel W. ; Siskey, Ryan ; Marcolongo, Michele ; Kurtz, Steven M.</creator><creatorcontrib>Basgul, Cemile ; Yu, Tony ; MacDonald, Daniel W. ; Siskey, Ryan ; Marcolongo, Michele ; Kurtz, Steven M.</creatorcontrib><description>Recent advances in the additive manufacturing technology now enable fused filament fabrication of polyetheretherketone (PEEK). A standardized lumbar fusion cage design was 3D printed with different speeds of the printhead nozzle to investigate whether 3D-printed PEEK cages exhibit sufficient material properties for lumbar fusion applications. It was observed that the compressive and shear strength of the 3D-printed cages were 63–71% of the machined cages, whereas the torsion strength was 92%. The printing speed is an important printing parameter for 3D-printed PEEK, which resulted in up to 20% porosity at the highest speed of 3000 mm/min, leading to reduced cage strength. Printing speeds below 1500 mm/min can be chosen as the optimal printing speed for this printer to reduce the printing time while maintaining strength. The crystallinity of printed PEEK did not differ significantly from the as-machined PEEK cages from extruded rods, indicating that the processing provides similar microstructure.</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/jmr.2018.178</identifier><identifier>PMID: 30555210</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Additive manufacturing ; Applied and Technical Physics ; Biomaterials ; Biomechanics ; Biomedical materials ; Cages ; Compressive strength ; Design ; Extrusion ; Fourier transforms ; Fused deposition modeling ; Inorganic Chemistry ; International organizations ; Laser sintering ; Load ; Manufacturing ; Material properties ; Materials Engineering ; Materials research ; Materials Science ; Mechanical properties ; Medical equipment ; Nanotechnology ; Nozzles ; Polyether ether ketones ; Polymers ; Porosity ; Printers (data processing) ; Rapid prototyping ; Shear strength ; Shear tests ; Software ; Studies ; Temperature ; Three dimensional printing ; Transplants &amp; implants</subject><ispartof>Journal of materials research, 2018-07, Vol.33 (14), p.2040-2051</ispartof><rights>Copyright © Materials Research Society 2018</rights><rights>The Materials Research Society 2018</rights><rights>The Materials Research Society 2018.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c580t-94184de222a859297696a638b2ccebb81f9021fdd343624025ab214370c785843</citedby><cites>FETCH-LOGICAL-c580t-94184de222a859297696a638b2ccebb81f9021fdd343624025ab214370c785843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/jmr.2018.178$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0884291418001784/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,230,314,778,782,883,27911,27912,41475,42544,51306,55615</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30555210$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Basgul, Cemile</creatorcontrib><creatorcontrib>Yu, Tony</creatorcontrib><creatorcontrib>MacDonald, Daniel W.</creatorcontrib><creatorcontrib>Siskey, Ryan</creatorcontrib><creatorcontrib>Marcolongo, Michele</creatorcontrib><creatorcontrib>Kurtz, Steven M.</creatorcontrib><title>Structure–property relationships for 3D-printed PEEK intervertebral lumbar cages produced using fused filament fabrication</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><addtitle>J. Mater. Res</addtitle><description>Recent advances in the additive manufacturing technology now enable fused filament fabrication of polyetheretherketone (PEEK). A standardized lumbar fusion cage design was 3D printed with different speeds of the printhead nozzle to investigate whether 3D-printed PEEK cages exhibit sufficient material properties for lumbar fusion applications. It was observed that the compressive and shear strength of the 3D-printed cages were 63–71% of the machined cages, whereas the torsion strength was 92%. The printing speed is an important printing parameter for 3D-printed PEEK, which resulted in up to 20% porosity at the highest speed of 3000 mm/min, leading to reduced cage strength. Printing speeds below 1500 mm/min can be chosen as the optimal printing speed for this printer to reduce the printing time while maintaining strength. The crystallinity of printed PEEK did not differ significantly from the as-machined PEEK cages from extruded rods, indicating that the processing provides similar microstructure.</description><subject>Additive manufacturing</subject><subject>Applied and Technical Physics</subject><subject>Biomaterials</subject><subject>Biomechanics</subject><subject>Biomedical materials</subject><subject>Cages</subject><subject>Compressive strength</subject><subject>Design</subject><subject>Extrusion</subject><subject>Fourier transforms</subject><subject>Fused deposition modeling</subject><subject>Inorganic Chemistry</subject><subject>International organizations</subject><subject>Laser sintering</subject><subject>Load</subject><subject>Manufacturing</subject><subject>Material properties</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Medical equipment</subject><subject>Nanotechnology</subject><subject>Nozzles</subject><subject>Polyether ether ketones</subject><subject>Polymers</subject><subject>Porosity</subject><subject>Printers (data processing)</subject><subject>Rapid prototyping</subject><subject>Shear strength</subject><subject>Shear tests</subject><subject>Software</subject><subject>Studies</subject><subject>Temperature</subject><subject>Three dimensional printing</subject><subject>Transplants &amp; implants</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkUtrFTEYhoNY7Gl151oCblx0jrlPshFKPVZpQUFdh0wmM81hbiaTQsGF_8F_6C8x03OsF1BX-SBP3rwfDwCPMVpjzsvn2z6sCcJyjUt5D6wIYqzglIj7YIWkZAVRmB2Coxi3CGGOSvYAHFLEOScYrcDn93NIdk7BffvydQrj5MJ8A4PrzOzHIV75KcJmDJC-LKbgh9nV8N1mcwGXMVxn2FXBdLBLfWUCtKZ1EeaYOtlMpuiHFjYp5rnxnendMMPGVMHb2_iH4KAxXXSP9ucx-Phq8-HsdXH59vzN2ellYblEc6EYlqx2hBAjuSKqFEoYQWVFrHVVJXGjEMFNXVNGBWGIcFMRzGiJbCm5ZPQYvNjlTqnqXW1zjVxa54V6E270aLz-_WbwV7odr7UgUnGKcsCzfUAYPyUXZ937aF3XmcGNKWqCeSm4JFJm9Okf6HZMYcjraSIZF1SVSP2TQqUQinO89D7ZUTaMMQbX3FXGSC_ydZavF_k6y8_4k1_XvIN_2M5AsQPi4rJ14eevfwlc7_83fZZWt-4_D74DPoDK5w</recordid><startdate>20180727</startdate><enddate>20180727</enddate><creator>Basgul, Cemile</creator><creator>Yu, Tony</creator><creator>MacDonald, Daniel W.</creator><creator>Siskey, Ryan</creator><creator>Marcolongo, Michele</creator><creator>Kurtz, Steven M.</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SR</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0W</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180727</creationdate><title>Structure–property relationships for 3D-printed PEEK intervertebral lumbar cages produced using fused filament fabrication</title><author>Basgul, Cemile ; Yu, Tony ; MacDonald, Daniel W. ; Siskey, Ryan ; Marcolongo, Michele ; Kurtz, Steven M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c580t-94184de222a859297696a638b2ccebb81f9021fdd343624025ab214370c785843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Additive manufacturing</topic><topic>Applied and Technical Physics</topic><topic>Biomaterials</topic><topic>Biomechanics</topic><topic>Biomedical materials</topic><topic>Cages</topic><topic>Compressive strength</topic><topic>Design</topic><topic>Extrusion</topic><topic>Fourier transforms</topic><topic>Fused deposition modeling</topic><topic>Inorganic Chemistry</topic><topic>International organizations</topic><topic>Laser sintering</topic><topic>Load</topic><topic>Manufacturing</topic><topic>Material properties</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Medical equipment</topic><topic>Nanotechnology</topic><topic>Nozzles</topic><topic>Polyether ether ketones</topic><topic>Polymers</topic><topic>Porosity</topic><topic>Printers (data processing)</topic><topic>Rapid prototyping</topic><topic>Shear strength</topic><topic>Shear tests</topic><topic>Software</topic><topic>Studies</topic><topic>Temperature</topic><topic>Three dimensional printing</topic><topic>Transplants &amp; implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Basgul, Cemile</creatorcontrib><creatorcontrib>Yu, Tony</creatorcontrib><creatorcontrib>MacDonald, Daniel W.</creatorcontrib><creatorcontrib>Siskey, Ryan</creatorcontrib><creatorcontrib>Marcolongo, Michele</creatorcontrib><creatorcontrib>Kurtz, Steven M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Basgul, Cemile</au><au>Yu, Tony</au><au>MacDonald, Daniel W.</au><au>Siskey, Ryan</au><au>Marcolongo, Michele</au><au>Kurtz, Steven M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure–property relationships for 3D-printed PEEK intervertebral lumbar cages produced using fused filament fabrication</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><addtitle>J. Mater. Res</addtitle><date>2018-07-27</date><risdate>2018</risdate><volume>33</volume><issue>14</issue><spage>2040</spage><epage>2051</epage><pages>2040-2051</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>Recent advances in the additive manufacturing technology now enable fused filament fabrication of polyetheretherketone (PEEK). A standardized lumbar fusion cage design was 3D printed with different speeds of the printhead nozzle to investigate whether 3D-printed PEEK cages exhibit sufficient material properties for lumbar fusion applications. It was observed that the compressive and shear strength of the 3D-printed cages were 63–71% of the machined cages, whereas the torsion strength was 92%. The printing speed is an important printing parameter for 3D-printed PEEK, which resulted in up to 20% porosity at the highest speed of 3000 mm/min, leading to reduced cage strength. Printing speeds below 1500 mm/min can be chosen as the optimal printing speed for this printer to reduce the printing time while maintaining strength. The crystallinity of printed PEEK did not differ significantly from the as-machined PEEK cages from extruded rods, indicating that the processing provides similar microstructure.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><pmid>30555210</pmid><doi>10.1557/jmr.2018.178</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0884-2914
ispartof Journal of materials research, 2018-07, Vol.33 (14), p.2040-2051
issn 0884-2914
2044-5326
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6289530
source Springer Nature - Complete Springer Journals; Cambridge University Press Journals Complete
subjects Additive manufacturing
Applied and Technical Physics
Biomaterials
Biomechanics
Biomedical materials
Cages
Compressive strength
Design
Extrusion
Fourier transforms
Fused deposition modeling
Inorganic Chemistry
International organizations
Laser sintering
Load
Manufacturing
Material properties
Materials Engineering
Materials research
Materials Science
Mechanical properties
Medical equipment
Nanotechnology
Nozzles
Polyether ether ketones
Polymers
Porosity
Printers (data processing)
Rapid prototyping
Shear strength
Shear tests
Software
Studies
Temperature
Three dimensional printing
Transplants & implants
title Structure–property relationships for 3D-printed PEEK intervertebral lumbar cages produced using fused filament fabrication
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T20%3A54%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%E2%80%93property%20relationships%20for%203D-printed%20PEEK%20intervertebral%20lumbar%20cages%20produced%20using%20fused%20filament%20fabrication&rft.jtitle=Journal%20of%20materials%20research&rft.au=Basgul,%20Cemile&rft.date=2018-07-27&rft.volume=33&rft.issue=14&rft.spage=2040&rft.epage=2051&rft.pages=2040-2051&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/jmr.2018.178&rft_dat=%3Cproquest_pubme%3E2845639709%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2076695514&rft_id=info:pmid/30555210&rft_cupid=10_1557_jmr_2018_178&rfr_iscdi=true