Structure–property relationships for 3D-printed PEEK intervertebral lumbar cages produced using fused filament fabrication
Recent advances in the additive manufacturing technology now enable fused filament fabrication of polyetheretherketone (PEEK). A standardized lumbar fusion cage design was 3D printed with different speeds of the printhead nozzle to investigate whether 3D-printed PEEK cages exhibit sufficient materia...
Gespeichert in:
Veröffentlicht in: | Journal of materials research 2018-07, Vol.33 (14), p.2040-2051 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recent advances in the additive manufacturing technology now enable fused filament fabrication of polyetheretherketone (PEEK). A standardized lumbar fusion cage design was 3D printed with different speeds of the printhead nozzle to investigate whether 3D-printed PEEK cages exhibit sufficient material properties for lumbar fusion applications. It was observed that the compressive and shear strength of the 3D-printed cages were 63–71% of the machined cages, whereas the torsion strength was 92%. The printing speed is an important printing parameter for 3D-printed PEEK, which resulted in up to 20% porosity at the highest speed of 3000 mm/min, leading to reduced cage strength. Printing speeds below 1500 mm/min can be chosen as the optimal printing speed for this printer to reduce the printing time while maintaining strength. The crystallinity of printed PEEK did not differ significantly from the as-machined PEEK cages from extruded rods, indicating that the processing provides similar microstructure. |
---|---|
ISSN: | 0884-2914 2044-5326 |
DOI: | 10.1557/jmr.2018.178 |