Diurnal Variation in PDK4 Expression Is Associated With Plasma Free Fatty Acid Availability in People

Many biological pathways involved in regulating substrate metabolism display rhythmic oscillation patterns. In rodents, clock genes regulate circadian rhythms of metabolic genes and substrate metabolism. However, the interrelationships among substrate metabolism, metabolic genes, and clock genes hav...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of clinical endocrinology and metabolism 2018-03, Vol.103 (3), p.1068-1076
Hauptverfasser: Yamaguchi, Shintaro, Moseley, Anna C, Almeda-Valdes, Paloma, Stromsdorfer, Kelly L, Franczyk, Michael P, Okunade, Adewole L, Patterson, Bruce W, Klein, Samuel, Yoshino, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many biological pathways involved in regulating substrate metabolism display rhythmic oscillation patterns. In rodents, clock genes regulate circadian rhythms of metabolic genes and substrate metabolism. However, the interrelationships among substrate metabolism, metabolic genes, and clock genes have not been fully explored in people. We tested the hypothesis that the diurnal expression pattern of pyruvate dehydrogenase kinase 4 (PDK4), a key metabolic enzyme involved in fuel switching between glucose and free fatty acids (FFAs), is associated with plasma FFA concentration and clock genes. We analyzed peripheral blood mononuclear cells (PBMCs), subcutaneous adipose tissue, and plasma samples obtained serially during 24 hours from metabolically healthy women (n = 10) and evaluated the interrelationships among PDK4, plasma FFA, and clock genes. We also determined the potential mechanisms responsible for PDK4 transcriptional regulation by using primary human PBMCs and adipocytes. We found that PDK4 diurnal expression patterns were similar in PBMCs and adipose tissue (ρ = 0.84, P < 0.001). The diurnal variation in PBMC PDK4 expression correlated more strongly with plasma FFA and insulin (ρ = 0.86 and 0.63, respectively, both P < 0.001) concentrations than clock genes. Data obtained from primary culture experiments demonstrated that FFAs directly induced PDK4 gene expression, at least in part through activation of peroxisome proliferator-activated receptor α. Our results suggest that plasma FFA availability is an important regulator of diurnal expression patterns of PDK4, and we identify a novel interaction between plasma FFA and cellular diurnal rhythms in regulating substrate metabolism.
ISSN:0021-972X
1945-7197
DOI:10.1210/jc.2017-02230