Quantifying pesticide deposits and spray patterns at micro‐scales on apple (Malus domesticus) leaves with a view to arthropod exposure

BACKGROUND Pesticides used in commercial crop systems can adversely affect non‐target arthropod populations. The spatial distribution of pesticide residues is rarely studied at scales relevant to these populations. Here, we combine two methods for assessing pesticide spray deposits at spatial scales...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pest management science 2018-12, Vol.74 (12), p.2884-2893
Hauptverfasser: Witton, Joanna T, Pickering, Matthew D, Alvarez, Tania, Reed, Melissa, Weyman, Gabriel, Hodson, Mark E, Ashauer, Roman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:BACKGROUND Pesticides used in commercial crop systems can adversely affect non‐target arthropod populations. The spatial distribution of pesticide residues is rarely studied at scales relevant to these populations. Here, we combine two methods for assessing pesticide spray deposits at spatial scales relevant to non‐target arthropods found in apple orchards. Pesticide residues were determined on individual apple leaves through conventional residue analysis; water‐sensitive paper was used to investigate spatial distributions in deposits at the micro‐scale. We also evaluated how accurately a digital image analysis program estimated pesticide residues. RESULTS We found that mean pesticide spray coverage on water‐sensitive paper varied by up to 6.1% (95% CI 9.4%, 2.7%) within an apple orchard, and leaf residues varied by up to 0.95 (95% CI 0.54, 1.36) mg kg−1 within a tree. Leaf residues based on analytical chemistry were six times lower than pesticide deposition estimated through image analysis of water‐sensitive paper, although these correlated strongly. This correlation allowed estimation of actual residues by application of a correction factor. CONCLUSION Our method demonstrates accurate estimation of pesticide deposits at the individual leaf scale through digital analysis of water‐sensitive paper and is a low‐cost, rapid alternative to conventional residue analysis techniques. © 2018 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. We present an analytical method to determine penconazole on single apple leaves, a scale relevant to non‐target arthropods. We also show that water‐sensitive paper can be used to estimate residues.
ISSN:1526-498X
1526-4998
DOI:10.1002/ps.5136