RANKL/RANK Pathway and Its Inhibitor RANK-Fc in Uterine Leiomyoma Growth

Abstract Context Uterine leiomyomas are the most common type of gynecologic tumor in women. Objective To determine the role of the cytokine receptor activator of nuclear factor κ-Β ligand (RANKL); its receptor, receptor activator of nuclear factor κ-Β (RANK); and the RANKL/RANK pathway inhibitor RAN...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of clinical endocrinology and metabolism 2018-05, Vol.103 (5), p.1842-1849
Hauptverfasser: Ikhena, Deborah E, Liu, Shimeng, Kujawa, Stacy, Esencan, Ecem, Coon, John S, Robins, Jared, Bulun, Serdar E, Yin, Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Context Uterine leiomyomas are the most common type of gynecologic tumor in women. Objective To determine the role of the cytokine receptor activator of nuclear factor κ-Β ligand (RANKL); its receptor, receptor activator of nuclear factor κ-Β (RANK); and the RANKL/RANK pathway inhibitor RANK-Fc in leiomyoma growth. Design Messenger RNA (mRNA) or protein levels of RANKL, RANK, and proliferation markers cyclin D1 and Ki67 were assessed in various leiomyoma tissues and cell populations. Human xenograft experiments were performed to determine the effects of RANK-Fc on leiomyoma growth in vivo. Setting Research laboratory. Patients Twenty-four regularly cycling premenopausal women (age 28 to 49 years) who were not receiving hormone therapy. Interventions None. Main Outcome Measure Tumor growth in a murine xenograft model following targeting of the RANKL/RANK pathway with RANK-Fc. Results RANKL mRNA levels in leiomyoma were significantly higher than those in myometrial tissues. The highest RANK levels were found in the leiomyoma stem cell population, which is deficient in progesterone receptor (PR). Conversely, the highest RANKL levels were found in the PR-rich leiomyoma intermediate cell (LIC) population. R5020, a PR agonist, specifically increased RANKL expression in LICs. RANK-Fc blocked RANKL-induced expression of the proliferative gene cyclin D1. Treatment with RANK-Fc also significantly decreased tumor growth in vivo and diminished the expression of proliferation marker Ki67 in tumors (P < 0.01; n = 4). Conclusions Treatment with the RANKL/RANK pathway inhibitor RANK-Fc significantly decreased human leiomyoma cell proliferation and tumor growth. This suggests that the RANKL/RANK pathway could serve as a potential target for the prevention and treatment of uterine leiomyoma. RANK-Fc impedes leiomyoma growth by inhibiting the RANKL/RANK pathway. RANK-Fc is a potential novel nonsteroidal treatment that blocks a paracrine pathway in uterine fibroids.
ISSN:0021-972X
1945-7197
DOI:10.1210/jc.2017-01585