RNA Sequencing Reveals the Suitability of Cardiac Death Livers for Transplantation

Background. Organ transplantation is considered the best treatment for end-stage organ failure. However, the lack of available organs for transplantation and the increasing number of patients waiting for transplants are primary issues facing the transplant community. Thus, developing strategies to i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BioMed research international 2018-01, Vol.2018 (2018), p.1-8
Hauptverfasser: Wang, Letian, Mao, Sha, Zhang, Qing, Wu, Fengdong, Yue, Yang, Cao, Li, Hao, Yuwen, Guo, Jing, Zhang, Xuyi, Shen, Zhongyang, Chen, Xinguo, Wang, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background. Organ transplantation is considered the best treatment for end-stage organ failure. However, the lack of available organs for transplantation and the increasing number of patients waiting for transplants are primary issues facing the transplant community. Thus, developing strategies to increase the number of donors, especially for liver transplantation, has become a priority. The use of organs acquired from donors who suffered cardiac related deaths has increased the pool of potential liver donors. However, donation after cardiac death (DCD) livers increases the risk of primary graft dysfunction. Methods. In the current study, we conducted transcriptome sequencing using livers from a DCD rat to assess the short-term feasibility and functional efficacy of DCD livers. RNA sequencing (RNAseq) data showed that the liver transcriptome varied greatly in rat livers subjected to 15 minutes of cardiac arrest. Results. The livers used in the current study had a significant loss of normal function before transplantation. Functional and network analyses consistently indicated that transcription and translation processes were inhibited after approximately 15 minutes of cardiac arrest. Moreover, the transcriptomic sequencing data provides significant insight for identifying functional genes and testing additional biological questions in DCD liver transplantation in future studies.
ISSN:2314-6133
2314-6141
DOI:10.1155/2018/8217486