Mechanisms and Characterization of the Pulsed Electron-Induced Grafting of Styrene onto Poly(tetrafluoroethylene-co-hexafluoropropylene) to Prepare a Polymer Electrolyte Membrane

During the pulsed-electron beam direct grafting of neat styrene onto poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP) substrate, the radiolytically-produced styryl and carbon-centered FEP radicals undergo various desired and undesired competing reactions. In this study, a high-dose rate is use...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Radiation research 2018-09, Vol.190 (3), p.309-321
Hauptverfasser: Kim, Byungnam, Weaver, Alia, Chumakov, Marina, Pazos, Ileana M., Poster, Dianne L., Gaskell, Karen, Han, Do Hung, Scherer, Günther, Yandrasits, Michael A., Lee, Byung Cheol, Al-Sheikhly, Mohamad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:During the pulsed-electron beam direct grafting of neat styrene onto poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP) substrate, the radiolytically-produced styryl and carbon-centered FEP radicals undergo various desired and undesired competing reactions. In this study, a high-dose rate is used to impede the undesired free radical homopolymerization of styrene and ensure uniform covalent grafting through 125-μm FEP films. This outweighs the enhancement of the undesired crosslinking reactions of carbon-centered FEP radicals and the dimerization of the styryl radicals. The degree of uniform grafting through 125-μm FEP films increases from ≈8%, immediately after pulsed electron irradiation to 33% with the subsequent thermal treatment exceeding the glass transition temperature of FEP of 39°C. On the contrary, steady-state radiolysis using 60Co gamma radiolysis, shows that the undesired homopolymerization of the styrene has become the predominant reaction with a negligible degree of grafting. Time-resolved fast kinetic measurements on pulsed neat styrene show that the styryl radicals undergo fast decays via propagation homopolymerization and termination reactions at an observed reaction rate constant of 5 × 108 l · mol–1 · s–1. The proton conductivity of 25-μm film at 80°C is 0.29 ± 0.01 s cm–1 and 0.007 s cm–1 at relative humidity of 92% and 28%, respectively. The aims of this work are: 1. electrolyte membranes are prepared via grafting initiated by a pulsed electron beam; 2. postirradiation heat-treated membranes are uniformly grafted, ideal for industry; 3. High dose rate is the primary parameter to promote the desired reactions; 4. measurement of kinetics of undesired radiation-induced styrene homopolymerization; and 5. The conductivity of prepared membranes is on par or higher than industry standards.
ISSN:0033-7587
1938-5404
DOI:10.1667/RR15006.1