Three-dimensional Printing of Thermoplastic Materials to Create Automated Syringe Pumps with Feedback Control for Microfluidic Applications
Microfluidics has become a critical tool in research across the biological, chemical, and physical sciences. One important component of microfluidic experimentation is a stable fluid handling system capable of accurately providing an inlet flow rate or inlet pressure. Here, we have developed a syrin...
Gespeichert in:
Veröffentlicht in: | Journal of Visualized Experiments 2018-08 (138) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Microfluidics has become a critical tool in research across the biological, chemical, and physical sciences. One important component of microfluidic experimentation is a stable fluid handling system capable of accurately providing an inlet flow rate or inlet pressure. Here, we have developed a syringe pump system capable of controlling and regulating the inlet fluid pressure delivered to a microfluidic device. This system was designed using low-cost materials and additive manufacturing principles, leveraging three-dimensional (3D) printing of thermoplastic materials and off-the-shelf components whenever possible. This system is composed of three main components: a syringe pump, a pressure transducer, and a programmable microcontroller. Within this paper, we detail a set of protocols for fabricating, assembling, and programming this syringe pump system. Furthermore, we have included representative results that demonstrate high-fidelity, feedback control of inlet pressure using this system. We expect this protocol will allow researchers to fabricate low-cost syringe pump systems, lowering the entry barrier for the use of microfluidics in biomedical, chemical, and materials research. |
---|---|
ISSN: | 1940-087X 1940-087X |
DOI: | 10.3791/57532 |