Developing a Minimally Structured Mathematical Model of Cancer Treatment with Oncolytic Viruses and Dendritic Cell Injections

Mathematical models of biological systems must strike a balance between being sufficiently complex to capture important biological features, while being simple enough that they remain tractable through analysis or simulation. In this work, we rigorously explore how to balance these competing interes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational and mathematical methods in medicine 2018-01, Vol.2018 (2018), p.1-14
Hauptverfasser: Gevertz, Jana L., Wares, Joanna R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mathematical models of biological systems must strike a balance between being sufficiently complex to capture important biological features, while being simple enough that they remain tractable through analysis or simulation. In this work, we rigorously explore how to balance these competing interests when modeling murine melanoma treatment with oncolytic viruses and dendritic cell injections. Previously, we developed a system of six ordinary differential equations containing fourteen parameters that well describes experimental data on the efficacy of these treatments. Here, we explore whether this previously developed model is the minimal model needed to accurately describe the data. Using a variety of techniques, including sensitivity analyses and a parameter sloppiness analysis, we find that our model can be reduced by one variable and three parameters and still give excellent fits to the data. We also argue that our model is not too simple to capture the dynamics of the data, and that the original and minimal models make similar predictions about the efficacy and robustness of protocols not considered in experiments. Reducing the model to its minimal form allows us to increase the tractability of the system in the face of parametric uncertainty.
ISSN:1748-670X
1748-6718
DOI:10.1155/2018/8760371