Resveratrol Decreases Oxidative Stress by Restoring Mitophagy and Improves the Pathophysiology of Dystrophin-Deficient mdx Mice

We previously showed that treatment with resveratrol (3,5,4′-trihydroxy-trans-stilbene), an activator of the NAD+-dependent deacetylase SIRT1 at 4 g/kg food for 32 weeks, significantly decreased the muscular reactive oxygen species (ROS) levels and ameliorated the pathology of mdx mice, an animal mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oxidative medicine and cellular longevity 2018-01, Vol.2018 (2018), p.1-13
Hauptverfasser: Hayashi, Takashi, Hosoda, Ryusuke, Kuno, Atsushi, Sebori, Rio, Horio, Yoshiyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We previously showed that treatment with resveratrol (3,5,4′-trihydroxy-trans-stilbene), an activator of the NAD+-dependent deacetylase SIRT1 at 4 g/kg food for 32 weeks, significantly decreased the muscular reactive oxygen species (ROS) levels and ameliorated the pathology of mdx mice, an animal model of Duchenne muscular dystrophy (DMD). Here, we treated mdx mice with various doses of resveratrol (0.04, 0.4, and 4 g/kg food) for 56 weeks and examined the effects on serum creatine kinase levels and physical activities. Because resveratrol promotes autophagy, we also investigated whether autophagy including mitochondrial autophagy (mitophagy) is involved in resveratrol’s effects. Autophagy/mitophagy-related genes and autophagic flux were downregulated in the muscle of mdx mice, and these phenomena were reversed by resveratrol with significant ROS reduction. Resveratrol at 4 g/kg food reduced the number of immature myofibers containing central nuclei and fine fibers 
ISSN:1942-0900
1942-0994
DOI:10.1155/2018/9179270