GPseudoRank: a permutation sampler for single cell orderings
Abstract Motivation A number of pseudotime methods have provided point estimates of the ordering of cells for scRNA-seq data. A still limited number of methods also model the uncertainty of the pseudotime estimate. However, there is still a need for a method to sample from complicated and multi-moda...
Gespeichert in:
Veröffentlicht in: | Bioinformatics 2019-02, Vol.35 (4), p.611-618 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 618 |
---|---|
container_issue | 4 |
container_start_page | 611 |
container_title | Bioinformatics |
container_volume | 35 |
creator | Strauß, Magdalena E Reid, John E Wernisch, Lorenz |
description | Abstract
Motivation
A number of pseudotime methods have provided point estimates of the ordering of cells for scRNA-seq data. A still limited number of methods also model the uncertainty of the pseudotime estimate. However, there is still a need for a method to sample from complicated and multi-modal distributions of orders, and to estimate changes in the amount of the uncertainty of the order during the course of a biological development, as this can support the selection of suitable cells for the clustering of genes or for network inference.
Results
In applications to scRNA-seq data we demonstrate the potential of GPseudoRank to sample from complex and multi-modal posterior distributions and to identify phases of lower and higher pseudotime uncertainty during a biological process. GPseudoRank also correctly identifies cells precocious in their antiviral response and links uncertainty in the ordering to metastable states. A variant of the method extends the advantages of Bayesian modelling and MCMC to large droplet-based scRNA-seq datasets.
Availability and implementation
Our method is available on github: https://github.com/magStra/GPseudoRank.
Supplementary information
Supplementary data are available at Bioinformatics online. |
doi_str_mv | 10.1093/bioinformatics/bty664 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6230469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/bty664</oup_id><sourcerecordid>2078580210</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-6fa5b05cb9763d6364c5cb680b78afcb51cef7d9115b22c6e6ca1392db6d02203</originalsourceid><addsrcrecordid>eNqNkF1LwzAUhoMobn78BKWX3tTlu62IIEOnMFBEr0OSpjPaNjVphf17MzaHu_PqnEPe87w5LwBnCF4iWJCJss62lfON7K0OE9UvOad7YIwohymGrNiPPeFZSnNIRuAohA8IGaKUHoIRiS3OsnwMrmfPwQyle5Ht51Uik874Zugj07VJkE1XG59ElyTYdlGbRJu6TpwvjY9zOAEHlayDOd3UY_B2f_c6fUjnT7PH6e081ZThPuWVZAoyrYqMk5ITTnUceA5VlstKK4a0qbKyQIgpjDU3XEtEClwqXkKMITkGN2tuN6jGlNq0vZe16LxtpF8KJ63YfWntu1i4b8ExgZQXEXCxAXj3NZjQi8aG1S2yNW4IAsMsZznEaOXF1lLtXQjeVFsbBMUqebGbvFgnH_fO__5xu_UbdRTAtcAN3T-ZP9GQl-0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2078580210</pqid></control><display><type>article</type><title>GPseudoRank: a permutation sampler for single cell orderings</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Strauß, Magdalena E ; Reid, John E ; Wernisch, Lorenz</creator><contributor>Berger, Bonnie</contributor><creatorcontrib>Strauß, Magdalena E ; Reid, John E ; Wernisch, Lorenz ; Berger, Bonnie</creatorcontrib><description>Abstract
Motivation
A number of pseudotime methods have provided point estimates of the ordering of cells for scRNA-seq data. A still limited number of methods also model the uncertainty of the pseudotime estimate. However, there is still a need for a method to sample from complicated and multi-modal distributions of orders, and to estimate changes in the amount of the uncertainty of the order during the course of a biological development, as this can support the selection of suitable cells for the clustering of genes or for network inference.
Results
In applications to scRNA-seq data we demonstrate the potential of GPseudoRank to sample from complex and multi-modal posterior distributions and to identify phases of lower and higher pseudotime uncertainty during a biological process. GPseudoRank also correctly identifies cells precocious in their antiviral response and links uncertainty in the ordering to metastable states. A variant of the method extends the advantages of Bayesian modelling and MCMC to large droplet-based scRNA-seq datasets.
Availability and implementation
Our method is available on github: https://github.com/magStra/GPseudoRank.
Supplementary information
Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/bty664</identifier><identifier>PMID: 30052778</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Bayes Theorem ; Cluster Analysis ; Original Papers ; Single-Cell Analysis ; Software</subject><ispartof>Bioinformatics, 2019-02, Vol.35 (4), p.611-618</ispartof><rights>The Author(s) 2018. Published by Oxford University Press. 2018</rights><rights>The Author(s) 2018. Published by Oxford University Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-6fa5b05cb9763d6364c5cb680b78afcb51cef7d9115b22c6e6ca1392db6d02203</citedby><cites>FETCH-LOGICAL-c452t-6fa5b05cb9763d6364c5cb680b78afcb51cef7d9115b22c6e6ca1392db6d02203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6230469/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6230469/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1604,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30052778$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Berger, Bonnie</contributor><creatorcontrib>Strauß, Magdalena E</creatorcontrib><creatorcontrib>Reid, John E</creatorcontrib><creatorcontrib>Wernisch, Lorenz</creatorcontrib><title>GPseudoRank: a permutation sampler for single cell orderings</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Abstract
Motivation
A number of pseudotime methods have provided point estimates of the ordering of cells for scRNA-seq data. A still limited number of methods also model the uncertainty of the pseudotime estimate. However, there is still a need for a method to sample from complicated and multi-modal distributions of orders, and to estimate changes in the amount of the uncertainty of the order during the course of a biological development, as this can support the selection of suitable cells for the clustering of genes or for network inference.
Results
In applications to scRNA-seq data we demonstrate the potential of GPseudoRank to sample from complex and multi-modal posterior distributions and to identify phases of lower and higher pseudotime uncertainty during a biological process. GPseudoRank also correctly identifies cells precocious in their antiviral response and links uncertainty in the ordering to metastable states. A variant of the method extends the advantages of Bayesian modelling and MCMC to large droplet-based scRNA-seq datasets.
Availability and implementation
Our method is available on github: https://github.com/magStra/GPseudoRank.
Supplementary information
Supplementary data are available at Bioinformatics online.</description><subject>Bayes Theorem</subject><subject>Cluster Analysis</subject><subject>Original Papers</subject><subject>Single-Cell Analysis</subject><subject>Software</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqNkF1LwzAUhoMobn78BKWX3tTlu62IIEOnMFBEr0OSpjPaNjVphf17MzaHu_PqnEPe87w5LwBnCF4iWJCJss62lfON7K0OE9UvOad7YIwohymGrNiPPeFZSnNIRuAohA8IGaKUHoIRiS3OsnwMrmfPwQyle5Ht51Uik874Zugj07VJkE1XG59ElyTYdlGbRJu6TpwvjY9zOAEHlayDOd3UY_B2f_c6fUjnT7PH6e081ZThPuWVZAoyrYqMk5ITTnUceA5VlstKK4a0qbKyQIgpjDU3XEtEClwqXkKMITkGN2tuN6jGlNq0vZe16LxtpF8KJ63YfWntu1i4b8ExgZQXEXCxAXj3NZjQi8aG1S2yNW4IAsMsZznEaOXF1lLtXQjeVFsbBMUqebGbvFgnH_fO__5xu_UbdRTAtcAN3T-ZP9GQl-0</recordid><startdate>20190215</startdate><enddate>20190215</enddate><creator>Strauß, Magdalena E</creator><creator>Reid, John E</creator><creator>Wernisch, Lorenz</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190215</creationdate><title>GPseudoRank: a permutation sampler for single cell orderings</title><author>Strauß, Magdalena E ; Reid, John E ; Wernisch, Lorenz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-6fa5b05cb9763d6364c5cb680b78afcb51cef7d9115b22c6e6ca1392db6d02203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bayes Theorem</topic><topic>Cluster Analysis</topic><topic>Original Papers</topic><topic>Single-Cell Analysis</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Strauß, Magdalena E</creatorcontrib><creatorcontrib>Reid, John E</creatorcontrib><creatorcontrib>Wernisch, Lorenz</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Strauß, Magdalena E</au><au>Reid, John E</au><au>Wernisch, Lorenz</au><au>Berger, Bonnie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GPseudoRank: a permutation sampler for single cell orderings</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2019-02-15</date><risdate>2019</risdate><volume>35</volume><issue>4</issue><spage>611</spage><epage>618</epage><pages>611-618</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><abstract>Abstract
Motivation
A number of pseudotime methods have provided point estimates of the ordering of cells for scRNA-seq data. A still limited number of methods also model the uncertainty of the pseudotime estimate. However, there is still a need for a method to sample from complicated and multi-modal distributions of orders, and to estimate changes in the amount of the uncertainty of the order during the course of a biological development, as this can support the selection of suitable cells for the clustering of genes or for network inference.
Results
In applications to scRNA-seq data we demonstrate the potential of GPseudoRank to sample from complex and multi-modal posterior distributions and to identify phases of lower and higher pseudotime uncertainty during a biological process. GPseudoRank also correctly identifies cells precocious in their antiviral response and links uncertainty in the ordering to metastable states. A variant of the method extends the advantages of Bayesian modelling and MCMC to large droplet-based scRNA-seq datasets.
Availability and implementation
Our method is available on github: https://github.com/magStra/GPseudoRank.
Supplementary information
Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>30052778</pmid><doi>10.1093/bioinformatics/bty664</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics, 2019-02, Vol.35 (4), p.611-618 |
issn | 1367-4803 1460-2059 1367-4811 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6230469 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford Journals Open Access Collection; PubMed Central; Alma/SFX Local Collection |
subjects | Bayes Theorem Cluster Analysis Original Papers Single-Cell Analysis Software |
title | GPseudoRank: a permutation sampler for single cell orderings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A03%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GPseudoRank:%20a%20permutation%20sampler%20for%20single%20cell%20orderings&rft.jtitle=Bioinformatics&rft.au=Strau%C3%9F,%20Magdalena%20E&rft.date=2019-02-15&rft.volume=35&rft.issue=4&rft.spage=611&rft.epage=618&rft.pages=611-618&rft.issn=1367-4803&rft.eissn=1460-2059&rft_id=info:doi/10.1093/bioinformatics/bty664&rft_dat=%3Cproquest_pubme%3E2078580210%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2078580210&rft_id=info:pmid/30052778&rft_oup_id=10.1093/bioinformatics/bty664&rfr_iscdi=true |