GPseudoRank: a permutation sampler for single cell orderings

Abstract Motivation A number of pseudotime methods have provided point estimates of the ordering of cells for scRNA-seq data. A still limited number of methods also model the uncertainty of the pseudotime estimate. However, there is still a need for a method to sample from complicated and multi-moda...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2019-02, Vol.35 (4), p.611-618
Hauptverfasser: Strauß, Magdalena E, Reid, John E, Wernisch, Lorenz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Motivation A number of pseudotime methods have provided point estimates of the ordering of cells for scRNA-seq data. A still limited number of methods also model the uncertainty of the pseudotime estimate. However, there is still a need for a method to sample from complicated and multi-modal distributions of orders, and to estimate changes in the amount of the uncertainty of the order during the course of a biological development, as this can support the selection of suitable cells for the clustering of genes or for network inference. Results In applications to scRNA-seq data we demonstrate the potential of GPseudoRank to sample from complex and multi-modal posterior distributions and to identify phases of lower and higher pseudotime uncertainty during a biological process. GPseudoRank also correctly identifies cells precocious in their antiviral response and links uncertainty in the ordering to metastable states. A variant of the method extends the advantages of Bayesian modelling and MCMC to large droplet-based scRNA-seq datasets. Availability and implementation Our method is available on github: https://github.com/magStra/GPseudoRank. Supplementary information Supplementary data are available at Bioinformatics online.
ISSN:1367-4803
1460-2059
1367-4811
DOI:10.1093/bioinformatics/bty664