Targeting SHIP-1 in Myeloid Cells Enhances Trained Immunity and Boosts Response to Infection
β-Glucan-induced trained immunity in myeloid cells leads to long-term protection against secondary infections. Although previous studies have characterized this phenomenon, strategies to boost trained immunity remain undefined. We found that β-glucan-trained macrophages from mice with a myeloid-spec...
Gespeichert in:
Veröffentlicht in: | Cell reports (Cambridge) 2018-10, Vol.25 (5), p.1118-1126 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | β-Glucan-induced trained immunity in myeloid cells leads to long-term protection against secondary infections. Although previous studies have characterized this phenomenon, strategies to boost trained immunity remain undefined. We found that β-glucan-trained macrophages from mice with a myeloid-specific deletion of the phosphatase SHIP-1 (LysMΔSHIP-1) showed enhanced proinflammatory cytokine production in response to lipopolysaccharide. Following β-glucan training, SHIP-1-deficient macrophages exhibited increased phosphorylation of Akt and mTOR targets, correlating with augmented glycolytic metabolism. Enhanced training in the absence of SHIP-1 relied on histone methylation and acetylation. Trained LysMΔSHIP-1 mice produced increased amounts of proinflammatory cytokines upon rechallenge in vivo and were better protected against Candida albicans infection compared with control littermates. Pharmacological inhibition of SHIP-1 enhanced trained immunity against Candida infection in mouse macrophages and human peripheral blood mononuclear cells. Our data establish proof of concept for improvement of trained immunity and a strategy to achieve it by targeting SHIP-1. |
---|---|
ISSN: | 2211-1247 2211-1247 |
DOI: | 10.1016/j.celrep.2018.09.092 |