Rational Design of WO3 Nanostructures as the Anode Materials for Lithium-Ion Batteries with Enhanced Electrochemical Performance

A facile, one-step hydrothermal method was employed to synthesize two kinds of WO3 nanostructures. By using different kinds of sylvine, tungsten trioxide(WO3) with different morphologies of microflowers and nanowires was obtained, respectively. The discharge capacities for microflowers and nanowires...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano-micro letters 2015-01, Vol.7 (1), p.12-16
Hauptverfasser: Liu, Yang, Jiao, Yang, Zhou, Haiyue, Yu, Xiang, Qu, Fengyu, Wu, Xiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A facile, one-step hydrothermal method was employed to synthesize two kinds of WO3 nanostructures. By using different kinds of sylvine, tungsten trioxide(WO3) with different morphologies of microflowers and nanowires was obtained, respectively. The discharge capacities for microflowers and nanowires are 107 and 146 m Ah g-1 after 180 cycles, and their corresponding capacity retentions after the first cycle are 72 and 85 %, respectively. Even at a high current density of 1,600 m Ah g-1, the discharge capacities of WO3 microflowers and nanowires are as high as 433 and557 m Ah g-1 after 40 cycles, in which the current densities were increased stepwise. It is worth mentioned that the rate capability of the nanowires is superior to that of the microflowers. However, the cycle performance of the microflowers is better than nanowires, revealing that the morphology and structure of the as-synthesized WO3 products can exert great influence on the electrochemical performances.
ISSN:2150-5551
2311-6706
2150-5551
DOI:10.1007/s40820-014-0013-5