Modeling motor learning using heteroskedastic functional principal components analysis
We propose a novel method for estimating population-level and subject-specific effects of covariates on the variability of functional data. We extend the functional principal components analysis framework by modeling the variance of principal component scores as a function of covariates and subject-...
Gespeichert in:
Veröffentlicht in: | Journal of the American Statistical Association 2018, Vol.113 (523), p.1003-1015 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1015 |
---|---|
container_issue | 523 |
container_start_page | 1003 |
container_title | Journal of the American Statistical Association |
container_volume | 113 |
creator | Backenroth, Daniel Goldsmith, Jeff Harran, Michelle D Cortes, Juan C Krakauer, John W Kitago, Tomoko |
description | We propose a novel method for estimating population-level and subject-specific effects of covariates on the variability of functional data. We extend the functional principal components analysis framework by modeling the variance of principal component scores as a function of covariates and subject-specific random effects. In a setting where principal components are largely invariant across subjects and covariate values, modeling the variance of these scores provides a flexible and interpretable way to explore factors that affect the variability of functional data. Our work is motivated by a novel dataset from an experiment assessing upper extremity motor control, and quantifies the reduction in motion variance associated with skill learning. |
doi_str_mv | 10.1080/01621459.2017.1379403 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6223649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2132293909</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1119-288ede3fab2b254628098ee2801ef9046f7c24f3875ac3554ea88f96fe927cfa3</originalsourceid><addsrcrecordid>eNpVUMtOwzAQtBCIlsIngHLkkuJXEvuChCpeUhEXQNwi11m3hsQOcYLUv8cRBcEe9qEZzYwWoVOC5wQLfIFJTgnP5JxiUswJKyTHbA9NScaKlBb8dR9NR046kiboKIQ3HKsQ4hBNGOYRYmSKXh58BbV166Txve-SGlTnxnMIY99AD50P71Cp0FudmMHp3nqn6qTtrNO2jZv2TesduD4kKiLbYMMxOjCqDnCymzP0fHP9tLhLl4-394urZdoSQmRKhYAKmFEruqIZz6nAUgDEQcBIzHNTaMoNE0WmNMsyDkoII3MDkhbaKDZDl9-67bBqoNIxRKfqMmZrVLctvbLlf8TZTbn2n2VOKcu5jALnO4HOfwwQ-rKxQUNdKwd-CCUljFLJJB6pZ3-9fk1-nsm-ADWxepU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132293909</pqid></control><display><type>article</type><title>Modeling motor learning using heteroskedastic functional principal components analysis</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Access via Taylor & Francis</source><creator>Backenroth, Daniel ; Goldsmith, Jeff ; Harran, Michelle D ; Cortes, Juan C ; Krakauer, John W ; Kitago, Tomoko</creator><creatorcontrib>Backenroth, Daniel ; Goldsmith, Jeff ; Harran, Michelle D ; Cortes, Juan C ; Krakauer, John W ; Kitago, Tomoko</creatorcontrib><description>We propose a novel method for estimating population-level and subject-specific effects of covariates on the variability of functional data. We extend the functional principal components analysis framework by modeling the variance of principal component scores as a function of covariates and subject-specific random effects. In a setting where principal components are largely invariant across subjects and covariate values, modeling the variance of these scores provides a flexible and interpretable way to explore factors that affect the variability of functional data. Our work is motivated by a novel dataset from an experiment assessing upper extremity motor control, and quantifies the reduction in motion variance associated with skill learning.</description><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1080/01621459.2017.1379403</identifier><identifier>PMID: 30416231</identifier><language>eng</language><publisher>United States</publisher><ispartof>Journal of the American Statistical Association, 2018, Vol.113 (523), p.1003-1015</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30416231$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Backenroth, Daniel</creatorcontrib><creatorcontrib>Goldsmith, Jeff</creatorcontrib><creatorcontrib>Harran, Michelle D</creatorcontrib><creatorcontrib>Cortes, Juan C</creatorcontrib><creatorcontrib>Krakauer, John W</creatorcontrib><creatorcontrib>Kitago, Tomoko</creatorcontrib><title>Modeling motor learning using heteroskedastic functional principal components analysis</title><title>Journal of the American Statistical Association</title><addtitle>J Am Stat Assoc</addtitle><description>We propose a novel method for estimating population-level and subject-specific effects of covariates on the variability of functional data. We extend the functional principal components analysis framework by modeling the variance of principal component scores as a function of covariates and subject-specific random effects. In a setting where principal components are largely invariant across subjects and covariate values, modeling the variance of these scores provides a flexible and interpretable way to explore factors that affect the variability of functional data. Our work is motivated by a novel dataset from an experiment assessing upper extremity motor control, and quantifies the reduction in motion variance associated with skill learning.</description><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpVUMtOwzAQtBCIlsIngHLkkuJXEvuChCpeUhEXQNwi11m3hsQOcYLUv8cRBcEe9qEZzYwWoVOC5wQLfIFJTgnP5JxiUswJKyTHbA9NScaKlBb8dR9NR046kiboKIQ3HKsQ4hBNGOYRYmSKXh58BbV166Txve-SGlTnxnMIY99AD50P71Cp0FudmMHp3nqn6qTtrNO2jZv2TesduD4kKiLbYMMxOjCqDnCymzP0fHP9tLhLl4-394urZdoSQmRKhYAKmFEruqIZz6nAUgDEQcBIzHNTaMoNE0WmNMsyDkoII3MDkhbaKDZDl9-67bBqoNIxRKfqMmZrVLctvbLlf8TZTbn2n2VOKcu5jALnO4HOfwwQ-rKxQUNdKwd-CCUljFLJJB6pZ3-9fk1-nsm-ADWxepU</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Backenroth, Daniel</creator><creator>Goldsmith, Jeff</creator><creator>Harran, Michelle D</creator><creator>Cortes, Juan C</creator><creator>Krakauer, John W</creator><creator>Kitago, Tomoko</creator><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2018</creationdate><title>Modeling motor learning using heteroskedastic functional principal components analysis</title><author>Backenroth, Daniel ; Goldsmith, Jeff ; Harran, Michelle D ; Cortes, Juan C ; Krakauer, John W ; Kitago, Tomoko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1119-288ede3fab2b254628098ee2801ef9046f7c24f3875ac3554ea88f96fe927cfa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Backenroth, Daniel</creatorcontrib><creatorcontrib>Goldsmith, Jeff</creatorcontrib><creatorcontrib>Harran, Michelle D</creatorcontrib><creatorcontrib>Cortes, Juan C</creatorcontrib><creatorcontrib>Krakauer, John W</creatorcontrib><creatorcontrib>Kitago, Tomoko</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Backenroth, Daniel</au><au>Goldsmith, Jeff</au><au>Harran, Michelle D</au><au>Cortes, Juan C</au><au>Krakauer, John W</au><au>Kitago, Tomoko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling motor learning using heteroskedastic functional principal components analysis</atitle><jtitle>Journal of the American Statistical Association</jtitle><addtitle>J Am Stat Assoc</addtitle><date>2018</date><risdate>2018</risdate><volume>113</volume><issue>523</issue><spage>1003</spage><epage>1015</epage><pages>1003-1015</pages><issn>0162-1459</issn><eissn>1537-274X</eissn><abstract>We propose a novel method for estimating population-level and subject-specific effects of covariates on the variability of functional data. We extend the functional principal components analysis framework by modeling the variance of principal component scores as a function of covariates and subject-specific random effects. In a setting where principal components are largely invariant across subjects and covariate values, modeling the variance of these scores provides a flexible and interpretable way to explore factors that affect the variability of functional data. Our work is motivated by a novel dataset from an experiment assessing upper extremity motor control, and quantifies the reduction in motion variance associated with skill learning.</abstract><cop>United States</cop><pmid>30416231</pmid><doi>10.1080/01621459.2017.1379403</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0162-1459 |
ispartof | Journal of the American Statistical Association, 2018, Vol.113 (523), p.1003-1015 |
issn | 0162-1459 1537-274X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6223649 |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Access via Taylor & Francis |
title | Modeling motor learning using heteroskedastic functional principal components analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T08%3A26%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20motor%20learning%20using%20heteroskedastic%20functional%20principal%20components%20analysis&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Backenroth,%20Daniel&rft.date=2018&rft.volume=113&rft.issue=523&rft.spage=1003&rft.epage=1015&rft.pages=1003-1015&rft.issn=0162-1459&rft.eissn=1537-274X&rft_id=info:doi/10.1080/01621459.2017.1379403&rft_dat=%3Cproquest_pubme%3E2132293909%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2132293909&rft_id=info:pmid/30416231&rfr_iscdi=true |