Modeling motor learning using heteroskedastic functional principal components analysis
We propose a novel method for estimating population-level and subject-specific effects of covariates on the variability of functional data. We extend the functional principal components analysis framework by modeling the variance of principal component scores as a function of covariates and subject-...
Gespeichert in:
Veröffentlicht in: | Journal of the American Statistical Association 2018, Vol.113 (523), p.1003-1015 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose a novel method for estimating population-level and subject-specific effects of covariates on the variability of functional data. We extend the functional principal components analysis framework by modeling the variance of principal component scores as a function of covariates and subject-specific random effects. In a setting where principal components are largely invariant across subjects and covariate values, modeling the variance of these scores provides a flexible and interpretable way to explore factors that affect the variability of functional data. Our work is motivated by a novel dataset from an experiment assessing upper extremity motor control, and quantifies the reduction in motion variance associated with skill learning. |
---|---|
ISSN: | 0162-1459 1537-274X |
DOI: | 10.1080/01621459.2017.1379403 |