Modeling motor learning using heteroskedastic functional principal components analysis

We propose a novel method for estimating population-level and subject-specific effects of covariates on the variability of functional data. We extend the functional principal components analysis framework by modeling the variance of principal component scores as a function of covariates and subject-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Statistical Association 2018, Vol.113 (523), p.1003-1015
Hauptverfasser: Backenroth, Daniel, Goldsmith, Jeff, Harran, Michelle D, Cortes, Juan C, Krakauer, John W, Kitago, Tomoko
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a novel method for estimating population-level and subject-specific effects of covariates on the variability of functional data. We extend the functional principal components analysis framework by modeling the variance of principal component scores as a function of covariates and subject-specific random effects. In a setting where principal components are largely invariant across subjects and covariate values, modeling the variance of these scores provides a flexible and interpretable way to explore factors that affect the variability of functional data. Our work is motivated by a novel dataset from an experiment assessing upper extremity motor control, and quantifies the reduction in motion variance associated with skill learning.
ISSN:0162-1459
1537-274X
DOI:10.1080/01621459.2017.1379403