Pressure‐Tuneable Visible‐Range Band Gap in the Ionic Spinel Tin Nitride

The application of pressure allows systematic tuning of the charge density of a material cleanly, that is, without changes to the chemical composition via dopants, and exploratory high‐pressure experiments can inform the design of bulk syntheses of materials that benefit from their properties under...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie (International ed.) 2018-09, Vol.57 (36), p.11623-11628
Hauptverfasser: Kearney, John S. C., Graužinytė, Miglė, Smith, Dean, Sneed, Daniel, Childs, Christian, Hinton, Jasmine, Park, Changyong, Smith, Jesse S., Kim, Eunja, Fitch, Samuel D. S., Hector, Andrew L., Pickard, Chris J., Flores‐Livas, José A., Salamat, Ashkan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The application of pressure allows systematic tuning of the charge density of a material cleanly, that is, without changes to the chemical composition via dopants, and exploratory high‐pressure experiments can inform the design of bulk syntheses of materials that benefit from their properties under compression. The electronic and structural response of semiconducting tin nitride Sn3N4 under compression is now reported. A continuous opening of the optical band gap was observed from 1.3 eV to 3.0 eV over a range of 100 GPa, a 540 nm blue‐shift spanning the entire visible spectrum. The pressure‐mediated band gap opening is general to this material across numerous high‐density polymorphs, implicating the predominant ionic bonding in the material as the cause. The rate of decompression to ambient conditions permits access to recoverable metastable states with varying band gaps energies, opening the possibility of pressure‐tuneable electronic properties for future applications. The nitrogen‐rich nitride Sn3N4 under compression displays continuous opening of its optical band gap. Probing the material with combined computational and experimental techniques reveals that the behaviour exists over numerous structural motifs, pointing to the chemical bonding present in the material as the root of the phenomenon, and opening the possibility for a whole class of similar materials.
ISSN:1433-7851
1521-3773
DOI:10.1002/anie.201805038