DNA damage interactions on both nanometer and micrometer scale determine overall cellular damage

DNA double strand breaks (DSB) play a pivotal role for cellular damage, which is a hazard encountered in toxicology and radiation protection, but also exploited e.g. in eradicating tumors in radiation therapy. It is still debated whether and in how far clustering of such DNA lesions leads to an enha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2018-10, Vol.8 (1), p.16063-10, Article 16063
Hauptverfasser: Friedrich, Thomas, Ilicic, Katarina, Greubel, Christoph, Girst, Stefanie, Reindl, Judith, Sammer, Matthias, Schwarz, Benjamin, Siebenwirth, Christian, Walsh, Dietrich W. M., Schmid, Thomas E., Scholz, Michael, Dollinger, Günther
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:DNA double strand breaks (DSB) play a pivotal role for cellular damage, which is a hazard encountered in toxicology and radiation protection, but also exploited e.g. in eradicating tumors in radiation therapy. It is still debated whether and in how far clustering of such DNA lesions leads to an enhanced severity of induced damage. Here we investigate - using focused spots of ionizing radiation as damaging agent - the spatial extension of DNA lesion patterns causing cell inactivation. We find that clustering of DNA damage on both the nm and µm scale leads to enhanced inactivation compared to more homogeneous lesion distributions. A biophysical model interprets these observations in terms of enhanced DSB production and DSB interaction, respectively. We decompose the overall effects quantitatively into contributions from these lesion formation processes, concluding that both processes coexist and need to be considered for determining the resulting damage on the cellular level.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-018-34323-9