Nitric oxide functions in stromal cell-derived factor-1-induced cytoskeleton changes and the migration of Jurkat cells

Stromal cell-derived factor-1 (SDF-1) regulates multiple cell signal pathways in a variety of cellular functions, including cell migration, proliferation, survival and angiogenesis. SDF-1-induced chemotaxis is an important step of lymphocyte migration. However, the molecular mechanisms that modulate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncology letters 2018-11, Vol.16 (5), p.6685-6690
Hauptverfasser: Luo, Jixian, Wei, Dan, Li, Dingyun, Wang, Lan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Stromal cell-derived factor-1 (SDF-1) regulates multiple cell signal pathways in a variety of cellular functions, including cell migration, proliferation, survival and angiogenesis. SDF-1-induced chemotaxis is an important step of lymphocyte migration. However, the molecular mechanisms that modulate SDF-1-mediated lymphocyte migration are not well identified. Nitric oxide (NO) has been found to function as a signaling molecule in a number of signaling pathways, including migration. In the present study, the potential role of NO in SDF-1-induced migration and the association between NO and the cytoskeletal changes of Jurkat cells was investigated. The present study demonstrated that Jurkat cells induced the production of NO by SDF-1 stimulation, using Griess reaction method and western blot analysis, and that NO was involved in SDF-1-induced rearrangement and polymerization of the cytoskeleton, using NOS inhibitor L-NMMA. Furthermore, NO was required for the migration of Jurkat cells. The research suggested that NO signaling pathways exerted a critical role in SDF-1-induced cytoskeleton changes and the migration of Jurkat cells. This work provides insight into the migration mechanism of acute lymphoblastic leukemia and provides an effective theoretical basis for therapy strategies for acute lymphoblastic leukemia.
ISSN:1792-1074
1792-1082
DOI:10.3892/ol.2018.9429