The earliest evidence for modern-style plate tectonics recorded by HP–LT metamorphism in the Paleoproterozoic of the Democratic Republic of the Congo

Knowing which geodynamic regimes characterised the early Earth is a fundamental question. This implies to determine when and how modern plate tectonics began. Today, the tectonic regime is dominated by mobile-lid tectonics including deep and cold subduction. However, in the early Earth (4.5 to 2 Ga)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2018-10, Vol.8 (1), p.15452-10, Article 15452
Hauptverfasser: François, Camille, Debaille, Vinciane, Paquette, Jean-Louis, Baudet, Daniel, Javaux, Emmanuelle J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Knowing which geodynamic regimes characterised the early Earth is a fundamental question. This implies to determine when and how modern plate tectonics began. Today, the tectonic regime is dominated by mobile-lid tectonics including deep and cold subduction. However, in the early Earth (4.5 to 2 Ga) stagnant-lid tectonics may also have occurred. The study of high pressure–low temperature (HP–LT) metamorphic rocks is important, because these rocks are only produced in present-day subduction settings. Here, we characterize the oldest known HP–LT eclogite worldwide (2089 ± 13 Ma; 17–23 kbar/500–550 °C), discovered in the Democratic Republic of the Congo. We provide evidence that the mafic protolith of the eclogite formed at 2216 ± 26 Ma in a rift-type basin, and was then subducted to mantle depths (>55 km) before being exhumed during a complete Wilson cycle lasting ca. 130 Ma. Our results indicate the operation of modern mobile-lid plate tectonics at 2.2–2.1 Ga.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-018-33823-y