A Principled Method to Identify Individual Differences and Behavioral Shifts in Signaled Active Avoidance

Signaled active avoidance (SigAA) is the key experimental procedure for studying the acquisition of instrumental responses toward conditioned threat cues. Traditional analytic approaches (e.g., general linear model) often obfuscate important individual differences, although individual differences in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Learning & memory (Cold Spring Harbor, N.Y.) N.Y.), 2018-11, Vol.25 (11), p.564-568
Hauptverfasser: Krypotos, Angelos-Miltiadis, Moscarello, Justin M, Sears, Robert M, LeDoux, Joseph E, Galatzer-Levy, Isaac
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Signaled active avoidance (SigAA) is the key experimental procedure for studying the acquisition of instrumental responses toward conditioned threat cues. Traditional analytic approaches (e.g., general linear model) often obfuscate important individual differences, although individual differences in learned responses characterize both animal and human learning data. However, individual differences models (e.g., latent growth curve modeling) typically require large samples and onerous computational methods. Here, we present an analytic methodology that enables the detection of individual differences in SigAA performance at a high accuracy, even when a single animal is included in the data set (i.e., n = 1 level). We further show an online software that enables the easy application of our method to any SigAA data set.
ISSN:1072-0502
1549-5485
1549-5485
DOI:10.1101/lm.047399.118