Anodal transcranial direct current stimulation prevents methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity by modulating autophagy in an in vivo mouse model of Parkinson’s disease
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by the accumulation of protein inclusions and the loss of dopaminergic neurons. Transcranial direct current stimulation (tDCS) is a non-invasive brain-stimulating technique that has demonstrated promising results in clinical stud...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2018-10, Vol.8 (1), p.15165-9, Article 15165 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Parkinson’s disease (PD) is a neurodegenerative disorder characterized by the accumulation of protein inclusions and the loss of dopaminergic neurons. Transcranial direct current stimulation (tDCS) is a non-invasive brain-stimulating technique that has demonstrated promising results in clinical studies of PD. Despite accumulating evidence indicating that tDCS exerts a protective effect, the mechanism underlying its activity remains unknown. In the present study, we first investigated the neuroprotective effect of tDCS in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model and then evaluated the effect of tDCS on the autophagy pathway. tDCS improved behavioral alterations, increased tyrosine hydroxylase protein levels and suppressed α-synuclein protein levels in MPTP-treated mice. MPTP-treated mice subjected to tDCS also had lower levels of autophagy-related proteins, such as microtubule-associated protein 1 light chain 3 and AMP-activated protein kinase, and higher levels of mechanistic target of rapamycin and p62. In addition, the protein levels of phosphoinositide 3-kinase and brain-derived neurotrophic factor were higher, and the levels of unc-51-like kinase 1 were lower in MPTP-treated mice subjected to tDCS. Our findings suggest that tDCS protected against MPTP-induced PD in a mouse model by modulating autophagy. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-018-33515-7 |