Peptide-based systems analysis of inflammation induced myeloid-derived suppressor cells reveals diverse signaling pathways
A better understanding of molecular signaling between myeloid‐derived suppressor cells (MDSC), tumor cells, T‐cells, and inflammatory mediators is expected to contribute to more effective cancer immunotherapies. We focus on plasma membrane associated proteins, which are critical in signaling and int...
Gespeichert in:
Veröffentlicht in: | Proteomics (Weinheim) 2016-07, Vol.16 (13), p.1881-1888 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A better understanding of molecular signaling between myeloid‐derived suppressor cells (MDSC), tumor cells, T‐cells, and inflammatory mediators is expected to contribute to more effective cancer immunotherapies. We focus on plasma membrane associated proteins, which are critical in signaling and intercellular communication, and investigate changes in their abundance in MDSC of tumor‐bearing mice subject to heightened versus basal inflammatory conditions. Using spectral counting, we observed statistically significant differential abundances for 35 proteins associated with the plasma membrane, most notably the pro‐inflammatory proteins S100A8 and S100A9 which induce MDSC and promote their migration. We also tested whether the peptides associated with canonical pathways showed a statistically significant increase or decrease subject to heightened versus basal inflammatory conditions. Collectively, these studies used bottom‐up proteomic analysis to identify plasma membrane associated pro‐inflammatory molecules and pathways that drive MDSC accumulation, migration, and suppressive potency. |
---|---|
ISSN: | 1615-9853 1615-9861 |
DOI: | 10.1002/pmic.201500102 |