Synthesis and Irreversible Thermochromic Sensor Applications of Manganese Violet

An irreversible thermochromic material based on manganese violet (MnNH₄P₂O₇) is synthesized. The crystal phase, chemical composition, and morphology of the synthesized material are analyzed using X-ray diffraction, scanning electron microscopy coupled with energy-dispersive X-ray spectrometry, and F...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2018-09, Vol.11 (9), p.1693
Hauptverfasser: Nguyen, Duy Khiem, Bach, Quang-Vu, Lee, Jong-Han, Kim, In-Tae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An irreversible thermochromic material based on manganese violet (MnNH₄P₂O₇) is synthesized. The crystal phase, chemical composition, and morphology of the synthesized material are analyzed using X-ray diffraction, scanning electron microscopy coupled with energy-dispersive X-ray spectrometry, and Fourier-transform infrared spectroscopy. The absorption spectra of the synthesized material are obtained using a UV-Vis spectrometer, and the thermochromism exhibited by the powdered samples at high temperatures is also investigated. The as-synthesized manganese violet pigment consists of pure α-MnNH₄P₂O₇ phase. In addition, the synthesized pigment largely consists of hexagonal crystals with a diameter of hundreds of nanometers. On heating, the pigment simultaneously loses H₂O and NH₃ in two successive steps at approximately 330⁻434.4 °C and 434.4⁻527 °C, which correspond to the formation of an intermediate phase and of Mn₂P₄O , respectively. An overall mass loss of 14.22% is observed, which is consistent with the expected 13.79%. An irreversible color change from violet to white is observed after exposure of the synthesized manganese violet pigment at 400 °C for 30 min. This is attributed to the oxidation of ammonia to hydroxylamine, which then decomposes to nitrogen and water, or alternatively to the direct oxidation of ammonia to nitrogen. Furthermore, we demonstrate the potential application of synthesized manganese violet in the production of irreversible thermochromic paint by mixing with potassium silicate solution as a binder and deionized water as a solvent at a specific ratio. The thermochromic paint is then applied in fabrication of irreversible thermochromic sensors by coating it onto a steel plate surface. Finally, we show that manganese violet-based irreversible thermochromic sensors are able to detect temperatures around 400 °C by changing color from violet to white/milky.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma11091693