Mycobacterium vaccae immunization protects aged rats from surgery-elicited neuroinflammation and cognitive dysfunction

Aging is a major risk factor for developing postoperative cognitive dysfunction. Neuroinflammatory processes, which can play a causal role in the etiology of postoperative cognitive dysfunction, are potentiated or primed as a function of aging. Here we explored whether exposure to a microorganism wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurobiology of aging 2018-11, Vol.71, p.105-114
Hauptverfasser: Fonken, Laura K., Frank, Matthew G., D'Angelo, Heather M., Heinze, Jared D., Watkins, Linda R., Lowry, Christopher A., Maier, Steven F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aging is a major risk factor for developing postoperative cognitive dysfunction. Neuroinflammatory processes, which can play a causal role in the etiology of postoperative cognitive dysfunction, are potentiated or primed as a function of aging. Here we explored whether exposure to a microorganism with immunoregulatory and anti-inflammatory properties, Mycobacterium vaccae NCTC 11659 (M. vaccae), could ameliorate age-associated neuroinflammatory priming. Aged (24 months) and adult (3 months) male F344XBN rats were immunized with heat-killed M. vaccae (3 injections, once per week) before undergoing a laparotomy or anesthesia control procedure. Aged, but not young rats, showed postoperative learning/memory deficits in a fear-conditioning paradigm. Importantly, M. vaccae immunization protected aged rats from these surgery-induced cognitive impairments. M. vaccae immunization also shifted the aged proinflammatory hippocampal microenvironment toward an anti-inflammatory phenotype. Furthermore, M. vaccae immunization reduced age-related hyperinflammatory responses in isolated hippocampal microglia. Overall, our novel data suggest that M. vaccae can induce an anti-inflammatory milieu in the aged brain and thus mitigate the neuroinflammatory and cognitive impairments induced by surgery.
ISSN:0197-4580
1558-1497
DOI:10.1016/j.neurobiolaging.2018.07.012