Minority and Majority Charge Carrier Mobility in Cu2ZnSnSe4 revealed by Terahertz Spectroscopy

The mobilities of electrons and holes determine the applicability of any semiconductor, but their individual measurement remains a major challenge. Here, we show that time-resolved terahertz spectroscopy (TRTS) can distinguish the mobilities of minority and majority charge carriers independently of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2018-09, Vol.8 (1), p.1-9, Article 14476
Hauptverfasser: Hempel, Hannes, Hages, Charles J., Eichberger, Rainer, Repins, Ingrid, Unold, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The mobilities of electrons and holes determine the applicability of any semiconductor, but their individual measurement remains a major challenge. Here, we show that time-resolved terahertz spectroscopy (TRTS) can distinguish the mobilities of minority and majority charge carriers independently of the doping-type and without electrical contacts. To this end, we combine the well-established determination of the sum of electron and hole mobilities from photo-induced THz absorption spectra with mobility-dependent ambipolar modeling of TRTS transients. The method is demonstrated on a polycrystalline Cu 2 ZnSnSe 4 thin film and reveals a minority (electron) mobility of 128 cm 2 /V-s and a majority (hole) carrier mobility of 7 cm 2 /V-s in the vertical transport direction relevant for light emitting, photovoltaic and solar water splitting devices. Additionally, the TRTS analysis yields an effective bulk carrier lifetime of 4.4 ns, a surface recombination velocity of 6 * 10 4  cm/s and a doping concentration of ca. 10 16 cm −3 , thus offering the potential for contactless screen novel optoelectronic materials.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-018-32695-6