Actions of Quercetin, a Polyphenol, on Blood Pressure

Disorder of blood pressure control causes serious diseases in the cardiovascular system. This review focuses on the anti-hypertensive action of quercetin, a flavonoid, which is one of the polyphenols characterized as the compounds containing large multiples of phenol structural units, by varying the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2017-01, Vol.22 (2), p.209
Hauptverfasser: Marunaka, Yoshinori, Marunaka, Rie, Sun, Hongxin, Yamamoto, Toshiro, Kanamura, Narisato, Inui, Toshio, Taruno, Akiyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Disorder of blood pressure control causes serious diseases in the cardiovascular system. This review focuses on the anti-hypertensive action of quercetin, a flavonoid, which is one of the polyphenols characterized as the compounds containing large multiples of phenol structural units, by varying the values of various blood pressure regulatory factors, such as vascular compliance, peripheral vascular resistance, and total blood volume via anti-inflammatory and anti-oxidant actions. In addition to the anti-inflammatory and anti-oxidant actions of quercetin, we especially describe a novel mechanism of quercetin's action on the cytosolic Cl concentration ([Cl ] ) and novel roles of the cytosolic Cl i.e.: (1) quercetin elevates [Cl ] by activating Na⁺-K⁺-2Cl cotransporter 1 (NKCC1) in renal epithelial cells contributing to Na⁺ reabsorption via the epithelial Na⁺ channel (ENaC); (2) the quercetin-induced elevation of [Cl ] in renal epithelial cells diminishes expression of ENaC leading to a decrease in renal Na⁺ reabsorption; and (3) this reduction of ENaC-mediated Na⁺ reabsorption in renal epithelial cells drops volume-dependent elevated blood pressure. In this review, we introduce novel, unique mechanisms of quercetin's anti-hypertensive action via activation of NKCC1 in detail.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules22020209