Chemical Composition, Antioxidant and α-Glucosidase-Inhibiting Activities of the Aqueous and Hydroethanolic Extracts of Vaccinium myrtillus Leaves

(bilberry) leaf is traditionally used in southeastern Europe for the treatment of diabetes. In the present study, the ability of bilberry leaf extracts to inhibit carbohydrate-hydrolyzing enzymes and restore glutathione concentration in Hep G2 cells subjected to glucose-induced oxidative stress was...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2017-04, Vol.22 (5), p.703
Hauptverfasser: Bljajić, Kristina, Petlevski, Roberta, Vujić, Lovorka, Čačić, Ana, Šoštarić, Nina, Jablan, Jasna, Saraiva de Carvalho, Isabel, Zovko Končić, Marijana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:(bilberry) leaf is traditionally used in southeastern Europe for the treatment of diabetes. In the present study, the ability of bilberry leaf extracts to inhibit carbohydrate-hydrolyzing enzymes and restore glutathione concentration in Hep G2 cells subjected to glucose-induced oxidative stress was investigated. A comprehensive analysis of the antioxidant activity of two bilberry leaf extracts was performed. The aqueous extract showed excellent total antioxidant and chelating activity. Its antioxidant activity in the β-carotene-linoleic acid assay was very good, reaching the activity of the antioxidant standard BHA (93.4 ± 2.3% vs. 95.1 ± 2.4%, respectively). The hydroethanolic extract (ethanol/H₂O, 8:2, / ), on the other hand, was a better radical scavenger and Fe reducing agent. Furthermore, the aqueous extract was able to efficiently increase glutathione concentration in Hep G2 cells subjected to glucose-induced oxidative stress and restore it to the levels observed in non-hyperglycaemic cells. The hydroethanolic extract strongly inhibited α-glucosidase, with the IC statistically equal to the antidiabetic drug acarbose (0.29 ± 0.02 mg/mL vs. 0.50 ± 0.01 mg/mL, respectively). Phytochemical analysis revealed the presence of quercetin and kaemferol derivatives, as well as chlorogenic and -coumaric acid. The study results indicate that leaf may have promising properties as a supporting therapy for diabetes.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules22050703