Surface enhanced Raman spectroscopy distinguishes amyloid Β‐protein isoforms and conformational states

Amyloid β‐protein (Aβ) self‐association is one process linked to the development of Alzheimer's disease (AD). Aβ peptides, including its most abundant forms, Aβ40 and Aβ42, are associated with the two predominant neuropathologic findings in AD, vascular and parenchymal amyloidosis, respectively...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Protein science 2018-08, Vol.27 (8), p.1427-1438
Hauptverfasser: Yu, Xinke, Hayden, Eric Y., Xia, Ming, Liang, Owen, Cheah, Lisa, Teplow, David B., Xie, Ya‐Hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1438
container_issue 8
container_start_page 1427
container_title Protein science
container_volume 27
creator Yu, Xinke
Hayden, Eric Y.
Xia, Ming
Liang, Owen
Cheah, Lisa
Teplow, David B.
Xie, Ya‐Hong
description Amyloid β‐protein (Aβ) self‐association is one process linked to the development of Alzheimer's disease (AD). Aβ peptides, including its most abundant forms, Aβ40 and Aβ42, are associated with the two predominant neuropathologic findings in AD, vascular and parenchymal amyloidosis, respectively. Efforts to develop therapies for AD often have focused on understanding and controlling the assembly of these two peptides. An obligate step in these efforts is the monitoring of assembly state. We show here that surface‐enhanced Raman spectroscopy (SERS) coupled with principal component analysis (PCA) readily distinguishes Aβ40 and Aβ42. We show further, through comparison of assembly dependent changes in secondary structure and morphology, that the SERS/PCA approach unambiguously differentiates closely related assembly stages not readily differentiable by circular dichroism spectroscopy, electron microscopy, or other techniques. The high discriminating power of SERS/PCA is based on the rich structural information present in its spectra, which comprises not only on interatomic resonances between covalently associated atoms and hydrogen bond interactions important in controlling secondary structure, but effects of protein orientation relative to the substrate surface. Coupled with the label‐free, single molecule sensitivity of SERS, the approach should prove useful for determining structure activity relationships, suggesting target sites for drug development, and for testing the effects of such drugs on the assembly process. The approach also could be of value in other systems in which assembly dependent changes in protein structure correlate with the formation of toxic peptide assemblies.
doi_str_mv 10.1002/pro.3434
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6153385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2032431088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3534-e75f804008f7c2fea6748d1ee617e98233da043f7813fa372884731826342a13</originalsourceid><addsrcrecordid>eNp1kc1qFTEYhoMo9lgFr0ACbtxMm79JMhtBitVCoVK7cBdi5ktPykwyJjOVs_MSihfmRXglzWlr_QFX4eN7ePImL0LPKdmjhLD9Kac9Lrh4gFZUyK7Rnfz0EK1IJ2mjudQ76EkpF4QQQRl_jHZYpwjRUq9Q-Lhkbx1giGsbHfT41I424jKBm3MqLk0b3Icyh3i-hLKGgu24GVLo8Y_vP79d1ZtnCBGHknzKY93GHrsUt4OdQ4p2wGW2M5Sn6JG3Q4Fnd-cuOjt8e3bwvjk-eXd08Oa4cbzlogHVek1EjeeVYx6sVEL3FEBSBZ1mnPeWCO6VptxbrpjWQnGqmeSCWcp30etb7bR8HqF3EOdsBzPlMNq8MckG8_cmhrU5T5dG0pZz3VbBqztBTl8WKLMZQ3EwDDZCWophhDPBKdG6oi__QS_SkuuTK0UpFaoVWv0WuvqfJYO_D0OJ2dZX52S29VX0xZ_h78FffVWguQW-hgE2_xWZD6cnN8Jrvr2nXA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2111475487</pqid></control><display><type>article</type><title>Surface enhanced Raman spectroscopy distinguishes amyloid Β‐protein isoforms and conformational states</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Yu, Xinke ; Hayden, Eric Y. ; Xia, Ming ; Liang, Owen ; Cheah, Lisa ; Teplow, David B. ; Xie, Ya‐Hong</creator><creatorcontrib>Yu, Xinke ; Hayden, Eric Y. ; Xia, Ming ; Liang, Owen ; Cheah, Lisa ; Teplow, David B. ; Xie, Ya‐Hong</creatorcontrib><description>Amyloid β‐protein (Aβ) self‐association is one process linked to the development of Alzheimer's disease (AD). Aβ peptides, including its most abundant forms, Aβ40 and Aβ42, are associated with the two predominant neuropathologic findings in AD, vascular and parenchymal amyloidosis, respectively. Efforts to develop therapies for AD often have focused on understanding and controlling the assembly of these two peptides. An obligate step in these efforts is the monitoring of assembly state. We show here that surface‐enhanced Raman spectroscopy (SERS) coupled with principal component analysis (PCA) readily distinguishes Aβ40 and Aβ42. We show further, through comparison of assembly dependent changes in secondary structure and morphology, that the SERS/PCA approach unambiguously differentiates closely related assembly stages not readily differentiable by circular dichroism spectroscopy, electron microscopy, or other techniques. The high discriminating power of SERS/PCA is based on the rich structural information present in its spectra, which comprises not only on interatomic resonances between covalently associated atoms and hydrogen bond interactions important in controlling secondary structure, but effects of protein orientation relative to the substrate surface. Coupled with the label‐free, single molecule sensitivity of SERS, the approach should prove useful for determining structure activity relationships, suggesting target sites for drug development, and for testing the effects of such drugs on the assembly process. The approach also could be of value in other systems in which assembly dependent changes in protein structure correlate with the formation of toxic peptide assemblies.</description><identifier>ISSN: 0961-8368</identifier><identifier>EISSN: 1469-896X</identifier><identifier>DOI: 10.1002/pro.3434</identifier><identifier>PMID: 29700868</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Alzheimer disease ; Alzheimer's disease ; Amyloid ; Amyloid beta-Peptides - chemistry ; Amyloid beta-Peptides - metabolism ; Amyloid β‐protein (Aβ) ; Amyloidosis ; Assembly ; Biosensing Techniques ; biosensor ; Chemical bonds ; Circular dichroism ; Dichroism ; Drug development ; Electron microscopy ; Full‐Length Papers ; Humans ; Hydrogen bonds ; Isoforms ; Morphology ; Neurodegenerative diseases ; Peptides ; Principal components analysis ; protein aggregation ; protein assembly ; Protein Folding ; Protein Isoforms ; protein misfolding ; Protein structure ; Proteins ; Raman spectroscopy ; Secondary structure ; Spectroscopy ; Spectrum analysis ; Spectrum Analysis, Raman - methods ; Substrates</subject><ispartof>Protein science, 2018-08, Vol.27 (8), p.1427-1438</ispartof><rights>2018 The Protein Society</rights><rights>2018 The Protein Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3534-e75f804008f7c2fea6748d1ee617e98233da043f7813fa372884731826342a13</citedby><cites>FETCH-LOGICAL-c3534-e75f804008f7c2fea6748d1ee617e98233da043f7813fa372884731826342a13</cites><orcidid>0000-0002-2389-3417 ; 0000-0001-6977-5056</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6153385/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6153385/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,1412,1428,27905,27906,45555,45556,46390,46814,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29700868$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Xinke</creatorcontrib><creatorcontrib>Hayden, Eric Y.</creatorcontrib><creatorcontrib>Xia, Ming</creatorcontrib><creatorcontrib>Liang, Owen</creatorcontrib><creatorcontrib>Cheah, Lisa</creatorcontrib><creatorcontrib>Teplow, David B.</creatorcontrib><creatorcontrib>Xie, Ya‐Hong</creatorcontrib><title>Surface enhanced Raman spectroscopy distinguishes amyloid Β‐protein isoforms and conformational states</title><title>Protein science</title><addtitle>Protein Sci</addtitle><description>Amyloid β‐protein (Aβ) self‐association is one process linked to the development of Alzheimer's disease (AD). Aβ peptides, including its most abundant forms, Aβ40 and Aβ42, are associated with the two predominant neuropathologic findings in AD, vascular and parenchymal amyloidosis, respectively. Efforts to develop therapies for AD often have focused on understanding and controlling the assembly of these two peptides. An obligate step in these efforts is the monitoring of assembly state. We show here that surface‐enhanced Raman spectroscopy (SERS) coupled with principal component analysis (PCA) readily distinguishes Aβ40 and Aβ42. We show further, through comparison of assembly dependent changes in secondary structure and morphology, that the SERS/PCA approach unambiguously differentiates closely related assembly stages not readily differentiable by circular dichroism spectroscopy, electron microscopy, or other techniques. The high discriminating power of SERS/PCA is based on the rich structural information present in its spectra, which comprises not only on interatomic resonances between covalently associated atoms and hydrogen bond interactions important in controlling secondary structure, but effects of protein orientation relative to the substrate surface. Coupled with the label‐free, single molecule sensitivity of SERS, the approach should prove useful for determining structure activity relationships, suggesting target sites for drug development, and for testing the effects of such drugs on the assembly process. The approach also could be of value in other systems in which assembly dependent changes in protein structure correlate with the formation of toxic peptide assemblies.</description><subject>Alzheimer disease</subject><subject>Alzheimer's disease</subject><subject>Amyloid</subject><subject>Amyloid beta-Peptides - chemistry</subject><subject>Amyloid beta-Peptides - metabolism</subject><subject>Amyloid β‐protein (Aβ)</subject><subject>Amyloidosis</subject><subject>Assembly</subject><subject>Biosensing Techniques</subject><subject>biosensor</subject><subject>Chemical bonds</subject><subject>Circular dichroism</subject><subject>Dichroism</subject><subject>Drug development</subject><subject>Electron microscopy</subject><subject>Full‐Length Papers</subject><subject>Humans</subject><subject>Hydrogen bonds</subject><subject>Isoforms</subject><subject>Morphology</subject><subject>Neurodegenerative diseases</subject><subject>Peptides</subject><subject>Principal components analysis</subject><subject>protein aggregation</subject><subject>protein assembly</subject><subject>Protein Folding</subject><subject>Protein Isoforms</subject><subject>protein misfolding</subject><subject>Protein structure</subject><subject>Proteins</subject><subject>Raman spectroscopy</subject><subject>Secondary structure</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Spectrum Analysis, Raman - methods</subject><subject>Substrates</subject><issn>0961-8368</issn><issn>1469-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1qFTEYhoMo9lgFr0ACbtxMm79JMhtBitVCoVK7cBdi5ktPykwyJjOVs_MSihfmRXglzWlr_QFX4eN7ePImL0LPKdmjhLD9Kac9Lrh4gFZUyK7Rnfz0EK1IJ2mjudQ76EkpF4QQQRl_jHZYpwjRUq9Q-Lhkbx1giGsbHfT41I424jKBm3MqLk0b3Icyh3i-hLKGgu24GVLo8Y_vP79d1ZtnCBGHknzKY93GHrsUt4OdQ4p2wGW2M5Sn6JG3Q4Fnd-cuOjt8e3bwvjk-eXd08Oa4cbzlogHVek1EjeeVYx6sVEL3FEBSBZ1mnPeWCO6VptxbrpjWQnGqmeSCWcp30etb7bR8HqF3EOdsBzPlMNq8MckG8_cmhrU5T5dG0pZz3VbBqztBTl8WKLMZQ3EwDDZCWophhDPBKdG6oi__QS_SkuuTK0UpFaoVWv0WuvqfJYO_D0OJ2dZX52S29VX0xZ_h78FffVWguQW-hgE2_xWZD6cnN8Jrvr2nXA</recordid><startdate>201808</startdate><enddate>201808</enddate><creator>Yu, Xinke</creator><creator>Hayden, Eric Y.</creator><creator>Xia, Ming</creator><creator>Liang, Owen</creator><creator>Cheah, Lisa</creator><creator>Teplow, David B.</creator><creator>Xie, Ya‐Hong</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T5</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2389-3417</orcidid><orcidid>https://orcid.org/0000-0001-6977-5056</orcidid></search><sort><creationdate>201808</creationdate><title>Surface enhanced Raman spectroscopy distinguishes amyloid Β‐protein isoforms and conformational states</title><author>Yu, Xinke ; Hayden, Eric Y. ; Xia, Ming ; Liang, Owen ; Cheah, Lisa ; Teplow, David B. ; Xie, Ya‐Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3534-e75f804008f7c2fea6748d1ee617e98233da043f7813fa372884731826342a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alzheimer disease</topic><topic>Alzheimer's disease</topic><topic>Amyloid</topic><topic>Amyloid beta-Peptides - chemistry</topic><topic>Amyloid beta-Peptides - metabolism</topic><topic>Amyloid β‐protein (Aβ)</topic><topic>Amyloidosis</topic><topic>Assembly</topic><topic>Biosensing Techniques</topic><topic>biosensor</topic><topic>Chemical bonds</topic><topic>Circular dichroism</topic><topic>Dichroism</topic><topic>Drug development</topic><topic>Electron microscopy</topic><topic>Full‐Length Papers</topic><topic>Humans</topic><topic>Hydrogen bonds</topic><topic>Isoforms</topic><topic>Morphology</topic><topic>Neurodegenerative diseases</topic><topic>Peptides</topic><topic>Principal components analysis</topic><topic>protein aggregation</topic><topic>protein assembly</topic><topic>Protein Folding</topic><topic>Protein Isoforms</topic><topic>protein misfolding</topic><topic>Protein structure</topic><topic>Proteins</topic><topic>Raman spectroscopy</topic><topic>Secondary structure</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Spectrum Analysis, Raman - methods</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Xinke</creatorcontrib><creatorcontrib>Hayden, Eric Y.</creatorcontrib><creatorcontrib>Xia, Ming</creatorcontrib><creatorcontrib>Liang, Owen</creatorcontrib><creatorcontrib>Cheah, Lisa</creatorcontrib><creatorcontrib>Teplow, David B.</creatorcontrib><creatorcontrib>Xie, Ya‐Hong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Protein science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Xinke</au><au>Hayden, Eric Y.</au><au>Xia, Ming</au><au>Liang, Owen</au><au>Cheah, Lisa</au><au>Teplow, David B.</au><au>Xie, Ya‐Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface enhanced Raman spectroscopy distinguishes amyloid Β‐protein isoforms and conformational states</atitle><jtitle>Protein science</jtitle><addtitle>Protein Sci</addtitle><date>2018-08</date><risdate>2018</risdate><volume>27</volume><issue>8</issue><spage>1427</spage><epage>1438</epage><pages>1427-1438</pages><issn>0961-8368</issn><eissn>1469-896X</eissn><abstract>Amyloid β‐protein (Aβ) self‐association is one process linked to the development of Alzheimer's disease (AD). Aβ peptides, including its most abundant forms, Aβ40 and Aβ42, are associated with the two predominant neuropathologic findings in AD, vascular and parenchymal amyloidosis, respectively. Efforts to develop therapies for AD often have focused on understanding and controlling the assembly of these two peptides. An obligate step in these efforts is the monitoring of assembly state. We show here that surface‐enhanced Raman spectroscopy (SERS) coupled with principal component analysis (PCA) readily distinguishes Aβ40 and Aβ42. We show further, through comparison of assembly dependent changes in secondary structure and morphology, that the SERS/PCA approach unambiguously differentiates closely related assembly stages not readily differentiable by circular dichroism spectroscopy, electron microscopy, or other techniques. The high discriminating power of SERS/PCA is based on the rich structural information present in its spectra, which comprises not only on interatomic resonances between covalently associated atoms and hydrogen bond interactions important in controlling secondary structure, but effects of protein orientation relative to the substrate surface. Coupled with the label‐free, single molecule sensitivity of SERS, the approach should prove useful for determining structure activity relationships, suggesting target sites for drug development, and for testing the effects of such drugs on the assembly process. The approach also could be of value in other systems in which assembly dependent changes in protein structure correlate with the formation of toxic peptide assemblies.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29700868</pmid><doi>10.1002/pro.3434</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2389-3417</orcidid><orcidid>https://orcid.org/0000-0001-6977-5056</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0961-8368
ispartof Protein science, 2018-08, Vol.27 (8), p.1427-1438
issn 0961-8368
1469-896X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6153385
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Free Content; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Alzheimer disease
Alzheimer's disease
Amyloid
Amyloid beta-Peptides - chemistry
Amyloid beta-Peptides - metabolism
Amyloid β‐protein (Aβ)
Amyloidosis
Assembly
Biosensing Techniques
biosensor
Chemical bonds
Circular dichroism
Dichroism
Drug development
Electron microscopy
Full‐Length Papers
Humans
Hydrogen bonds
Isoforms
Morphology
Neurodegenerative diseases
Peptides
Principal components analysis
protein aggregation
protein assembly
Protein Folding
Protein Isoforms
protein misfolding
Protein structure
Proteins
Raman spectroscopy
Secondary structure
Spectroscopy
Spectrum analysis
Spectrum Analysis, Raman - methods
Substrates
title Surface enhanced Raman spectroscopy distinguishes amyloid Β‐protein isoforms and conformational states
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T07%3A14%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20enhanced%20Raman%20spectroscopy%20distinguishes%20amyloid%20%CE%92%E2%80%90protein%20isoforms%20and%20conformational%20states&rft.jtitle=Protein%20science&rft.au=Yu,%20Xinke&rft.date=2018-08&rft.volume=27&rft.issue=8&rft.spage=1427&rft.epage=1438&rft.pages=1427-1438&rft.issn=0961-8368&rft.eissn=1469-896X&rft_id=info:doi/10.1002/pro.3434&rft_dat=%3Cproquest_pubme%3E2032431088%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2111475487&rft_id=info:pmid/29700868&rfr_iscdi=true