Surface enhanced Raman spectroscopy distinguishes amyloid Β‐protein isoforms and conformational states
Amyloid β‐protein (Aβ) self‐association is one process linked to the development of Alzheimer's disease (AD). Aβ peptides, including its most abundant forms, Aβ40 and Aβ42, are associated with the two predominant neuropathologic findings in AD, vascular and parenchymal amyloidosis, respectively...
Gespeichert in:
Veröffentlicht in: | Protein science 2018-08, Vol.27 (8), p.1427-1438 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1438 |
---|---|
container_issue | 8 |
container_start_page | 1427 |
container_title | Protein science |
container_volume | 27 |
creator | Yu, Xinke Hayden, Eric Y. Xia, Ming Liang, Owen Cheah, Lisa Teplow, David B. Xie, Ya‐Hong |
description | Amyloid β‐protein (Aβ) self‐association is one process linked to the development of Alzheimer's disease (AD). Aβ peptides, including its most abundant forms, Aβ40 and Aβ42, are associated with the two predominant neuropathologic findings in AD, vascular and parenchymal amyloidosis, respectively. Efforts to develop therapies for AD often have focused on understanding and controlling the assembly of these two peptides. An obligate step in these efforts is the monitoring of assembly state. We show here that surface‐enhanced Raman spectroscopy (SERS) coupled with principal component analysis (PCA) readily distinguishes Aβ40 and Aβ42. We show further, through comparison of assembly dependent changes in secondary structure and morphology, that the SERS/PCA approach unambiguously differentiates closely related assembly stages not readily differentiable by circular dichroism spectroscopy, electron microscopy, or other techniques. The high discriminating power of SERS/PCA is based on the rich structural information present in its spectra, which comprises not only on interatomic resonances between covalently associated atoms and hydrogen bond interactions important in controlling secondary structure, but effects of protein orientation relative to the substrate surface. Coupled with the label‐free, single molecule sensitivity of SERS, the approach should prove useful for determining structure activity relationships, suggesting target sites for drug development, and for testing the effects of such drugs on the assembly process. The approach also could be of value in other systems in which assembly dependent changes in protein structure correlate with the formation of toxic peptide assemblies. |
doi_str_mv | 10.1002/pro.3434 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6153385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2032431088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3534-e75f804008f7c2fea6748d1ee617e98233da043f7813fa372884731826342a13</originalsourceid><addsrcrecordid>eNp1kc1qFTEYhoMo9lgFr0ACbtxMm79JMhtBitVCoVK7cBdi5ktPykwyJjOVs_MSihfmRXglzWlr_QFX4eN7ePImL0LPKdmjhLD9Kac9Lrh4gFZUyK7Rnfz0EK1IJ2mjudQ76EkpF4QQQRl_jHZYpwjRUq9Q-Lhkbx1giGsbHfT41I424jKBm3MqLk0b3Icyh3i-hLKGgu24GVLo8Y_vP79d1ZtnCBGHknzKY93GHrsUt4OdQ4p2wGW2M5Sn6JG3Q4Fnd-cuOjt8e3bwvjk-eXd08Oa4cbzlogHVek1EjeeVYx6sVEL3FEBSBZ1mnPeWCO6VptxbrpjWQnGqmeSCWcp30etb7bR8HqF3EOdsBzPlMNq8MckG8_cmhrU5T5dG0pZz3VbBqztBTl8WKLMZQ3EwDDZCWophhDPBKdG6oi__QS_SkuuTK0UpFaoVWv0WuvqfJYO_D0OJ2dZX52S29VX0xZ_h78FffVWguQW-hgE2_xWZD6cnN8Jrvr2nXA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2111475487</pqid></control><display><type>article</type><title>Surface enhanced Raman spectroscopy distinguishes amyloid Β‐protein isoforms and conformational states</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Yu, Xinke ; Hayden, Eric Y. ; Xia, Ming ; Liang, Owen ; Cheah, Lisa ; Teplow, David B. ; Xie, Ya‐Hong</creator><creatorcontrib>Yu, Xinke ; Hayden, Eric Y. ; Xia, Ming ; Liang, Owen ; Cheah, Lisa ; Teplow, David B. ; Xie, Ya‐Hong</creatorcontrib><description>Amyloid β‐protein (Aβ) self‐association is one process linked to the development of Alzheimer's disease (AD). Aβ peptides, including its most abundant forms, Aβ40 and Aβ42, are associated with the two predominant neuropathologic findings in AD, vascular and parenchymal amyloidosis, respectively. Efforts to develop therapies for AD often have focused on understanding and controlling the assembly of these two peptides. An obligate step in these efforts is the monitoring of assembly state. We show here that surface‐enhanced Raman spectroscopy (SERS) coupled with principal component analysis (PCA) readily distinguishes Aβ40 and Aβ42. We show further, through comparison of assembly dependent changes in secondary structure and morphology, that the SERS/PCA approach unambiguously differentiates closely related assembly stages not readily differentiable by circular dichroism spectroscopy, electron microscopy, or other techniques. The high discriminating power of SERS/PCA is based on the rich structural information present in its spectra, which comprises not only on interatomic resonances between covalently associated atoms and hydrogen bond interactions important in controlling secondary structure, but effects of protein orientation relative to the substrate surface. Coupled with the label‐free, single molecule sensitivity of SERS, the approach should prove useful for determining structure activity relationships, suggesting target sites for drug development, and for testing the effects of such drugs on the assembly process. The approach also could be of value in other systems in which assembly dependent changes in protein structure correlate with the formation of toxic peptide assemblies.</description><identifier>ISSN: 0961-8368</identifier><identifier>EISSN: 1469-896X</identifier><identifier>DOI: 10.1002/pro.3434</identifier><identifier>PMID: 29700868</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Alzheimer disease ; Alzheimer's disease ; Amyloid ; Amyloid beta-Peptides - chemistry ; Amyloid beta-Peptides - metabolism ; Amyloid β‐protein (Aβ) ; Amyloidosis ; Assembly ; Biosensing Techniques ; biosensor ; Chemical bonds ; Circular dichroism ; Dichroism ; Drug development ; Electron microscopy ; Full‐Length Papers ; Humans ; Hydrogen bonds ; Isoforms ; Morphology ; Neurodegenerative diseases ; Peptides ; Principal components analysis ; protein aggregation ; protein assembly ; Protein Folding ; Protein Isoforms ; protein misfolding ; Protein structure ; Proteins ; Raman spectroscopy ; Secondary structure ; Spectroscopy ; Spectrum analysis ; Spectrum Analysis, Raman - methods ; Substrates</subject><ispartof>Protein science, 2018-08, Vol.27 (8), p.1427-1438</ispartof><rights>2018 The Protein Society</rights><rights>2018 The Protein Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3534-e75f804008f7c2fea6748d1ee617e98233da043f7813fa372884731826342a13</citedby><cites>FETCH-LOGICAL-c3534-e75f804008f7c2fea6748d1ee617e98233da043f7813fa372884731826342a13</cites><orcidid>0000-0002-2389-3417 ; 0000-0001-6977-5056</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6153385/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6153385/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,1412,1428,27905,27906,45555,45556,46390,46814,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29700868$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Xinke</creatorcontrib><creatorcontrib>Hayden, Eric Y.</creatorcontrib><creatorcontrib>Xia, Ming</creatorcontrib><creatorcontrib>Liang, Owen</creatorcontrib><creatorcontrib>Cheah, Lisa</creatorcontrib><creatorcontrib>Teplow, David B.</creatorcontrib><creatorcontrib>Xie, Ya‐Hong</creatorcontrib><title>Surface enhanced Raman spectroscopy distinguishes amyloid Β‐protein isoforms and conformational states</title><title>Protein science</title><addtitle>Protein Sci</addtitle><description>Amyloid β‐protein (Aβ) self‐association is one process linked to the development of Alzheimer's disease (AD). Aβ peptides, including its most abundant forms, Aβ40 and Aβ42, are associated with the two predominant neuropathologic findings in AD, vascular and parenchymal amyloidosis, respectively. Efforts to develop therapies for AD often have focused on understanding and controlling the assembly of these two peptides. An obligate step in these efforts is the monitoring of assembly state. We show here that surface‐enhanced Raman spectroscopy (SERS) coupled with principal component analysis (PCA) readily distinguishes Aβ40 and Aβ42. We show further, through comparison of assembly dependent changes in secondary structure and morphology, that the SERS/PCA approach unambiguously differentiates closely related assembly stages not readily differentiable by circular dichroism spectroscopy, electron microscopy, or other techniques. The high discriminating power of SERS/PCA is based on the rich structural information present in its spectra, which comprises not only on interatomic resonances between covalently associated atoms and hydrogen bond interactions important in controlling secondary structure, but effects of protein orientation relative to the substrate surface. Coupled with the label‐free, single molecule sensitivity of SERS, the approach should prove useful for determining structure activity relationships, suggesting target sites for drug development, and for testing the effects of such drugs on the assembly process. The approach also could be of value in other systems in which assembly dependent changes in protein structure correlate with the formation of toxic peptide assemblies.</description><subject>Alzheimer disease</subject><subject>Alzheimer's disease</subject><subject>Amyloid</subject><subject>Amyloid beta-Peptides - chemistry</subject><subject>Amyloid beta-Peptides - metabolism</subject><subject>Amyloid β‐protein (Aβ)</subject><subject>Amyloidosis</subject><subject>Assembly</subject><subject>Biosensing Techniques</subject><subject>biosensor</subject><subject>Chemical bonds</subject><subject>Circular dichroism</subject><subject>Dichroism</subject><subject>Drug development</subject><subject>Electron microscopy</subject><subject>Full‐Length Papers</subject><subject>Humans</subject><subject>Hydrogen bonds</subject><subject>Isoforms</subject><subject>Morphology</subject><subject>Neurodegenerative diseases</subject><subject>Peptides</subject><subject>Principal components analysis</subject><subject>protein aggregation</subject><subject>protein assembly</subject><subject>Protein Folding</subject><subject>Protein Isoforms</subject><subject>protein misfolding</subject><subject>Protein structure</subject><subject>Proteins</subject><subject>Raman spectroscopy</subject><subject>Secondary structure</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Spectrum Analysis, Raman - methods</subject><subject>Substrates</subject><issn>0961-8368</issn><issn>1469-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1qFTEYhoMo9lgFr0ACbtxMm79JMhtBitVCoVK7cBdi5ktPykwyJjOVs_MSihfmRXglzWlr_QFX4eN7ePImL0LPKdmjhLD9Kac9Lrh4gFZUyK7Rnfz0EK1IJ2mjudQ76EkpF4QQQRl_jHZYpwjRUq9Q-Lhkbx1giGsbHfT41I424jKBm3MqLk0b3Icyh3i-hLKGgu24GVLo8Y_vP79d1ZtnCBGHknzKY93GHrsUt4OdQ4p2wGW2M5Sn6JG3Q4Fnd-cuOjt8e3bwvjk-eXd08Oa4cbzlogHVek1EjeeVYx6sVEL3FEBSBZ1mnPeWCO6VptxbrpjWQnGqmeSCWcp30etb7bR8HqF3EOdsBzPlMNq8MckG8_cmhrU5T5dG0pZz3VbBqztBTl8WKLMZQ3EwDDZCWophhDPBKdG6oi__QS_SkuuTK0UpFaoVWv0WuvqfJYO_D0OJ2dZX52S29VX0xZ_h78FffVWguQW-hgE2_xWZD6cnN8Jrvr2nXA</recordid><startdate>201808</startdate><enddate>201808</enddate><creator>Yu, Xinke</creator><creator>Hayden, Eric Y.</creator><creator>Xia, Ming</creator><creator>Liang, Owen</creator><creator>Cheah, Lisa</creator><creator>Teplow, David B.</creator><creator>Xie, Ya‐Hong</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T5</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2389-3417</orcidid><orcidid>https://orcid.org/0000-0001-6977-5056</orcidid></search><sort><creationdate>201808</creationdate><title>Surface enhanced Raman spectroscopy distinguishes amyloid Β‐protein isoforms and conformational states</title><author>Yu, Xinke ; Hayden, Eric Y. ; Xia, Ming ; Liang, Owen ; Cheah, Lisa ; Teplow, David B. ; Xie, Ya‐Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3534-e75f804008f7c2fea6748d1ee617e98233da043f7813fa372884731826342a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alzheimer disease</topic><topic>Alzheimer's disease</topic><topic>Amyloid</topic><topic>Amyloid beta-Peptides - chemistry</topic><topic>Amyloid beta-Peptides - metabolism</topic><topic>Amyloid β‐protein (Aβ)</topic><topic>Amyloidosis</topic><topic>Assembly</topic><topic>Biosensing Techniques</topic><topic>biosensor</topic><topic>Chemical bonds</topic><topic>Circular dichroism</topic><topic>Dichroism</topic><topic>Drug development</topic><topic>Electron microscopy</topic><topic>Full‐Length Papers</topic><topic>Humans</topic><topic>Hydrogen bonds</topic><topic>Isoforms</topic><topic>Morphology</topic><topic>Neurodegenerative diseases</topic><topic>Peptides</topic><topic>Principal components analysis</topic><topic>protein aggregation</topic><topic>protein assembly</topic><topic>Protein Folding</topic><topic>Protein Isoforms</topic><topic>protein misfolding</topic><topic>Protein structure</topic><topic>Proteins</topic><topic>Raman spectroscopy</topic><topic>Secondary structure</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Spectrum Analysis, Raman - methods</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Xinke</creatorcontrib><creatorcontrib>Hayden, Eric Y.</creatorcontrib><creatorcontrib>Xia, Ming</creatorcontrib><creatorcontrib>Liang, Owen</creatorcontrib><creatorcontrib>Cheah, Lisa</creatorcontrib><creatorcontrib>Teplow, David B.</creatorcontrib><creatorcontrib>Xie, Ya‐Hong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Protein science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Xinke</au><au>Hayden, Eric Y.</au><au>Xia, Ming</au><au>Liang, Owen</au><au>Cheah, Lisa</au><au>Teplow, David B.</au><au>Xie, Ya‐Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface enhanced Raman spectroscopy distinguishes amyloid Β‐protein isoforms and conformational states</atitle><jtitle>Protein science</jtitle><addtitle>Protein Sci</addtitle><date>2018-08</date><risdate>2018</risdate><volume>27</volume><issue>8</issue><spage>1427</spage><epage>1438</epage><pages>1427-1438</pages><issn>0961-8368</issn><eissn>1469-896X</eissn><abstract>Amyloid β‐protein (Aβ) self‐association is one process linked to the development of Alzheimer's disease (AD). Aβ peptides, including its most abundant forms, Aβ40 and Aβ42, are associated with the two predominant neuropathologic findings in AD, vascular and parenchymal amyloidosis, respectively. Efforts to develop therapies for AD often have focused on understanding and controlling the assembly of these two peptides. An obligate step in these efforts is the monitoring of assembly state. We show here that surface‐enhanced Raman spectroscopy (SERS) coupled with principal component analysis (PCA) readily distinguishes Aβ40 and Aβ42. We show further, through comparison of assembly dependent changes in secondary structure and morphology, that the SERS/PCA approach unambiguously differentiates closely related assembly stages not readily differentiable by circular dichroism spectroscopy, electron microscopy, or other techniques. The high discriminating power of SERS/PCA is based on the rich structural information present in its spectra, which comprises not only on interatomic resonances between covalently associated atoms and hydrogen bond interactions important in controlling secondary structure, but effects of protein orientation relative to the substrate surface. Coupled with the label‐free, single molecule sensitivity of SERS, the approach should prove useful for determining structure activity relationships, suggesting target sites for drug development, and for testing the effects of such drugs on the assembly process. The approach also could be of value in other systems in which assembly dependent changes in protein structure correlate with the formation of toxic peptide assemblies.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29700868</pmid><doi>10.1002/pro.3434</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2389-3417</orcidid><orcidid>https://orcid.org/0000-0001-6977-5056</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0961-8368 |
ispartof | Protein science, 2018-08, Vol.27 (8), p.1427-1438 |
issn | 0961-8368 1469-896X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6153385 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Free Content; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Alzheimer disease Alzheimer's disease Amyloid Amyloid beta-Peptides - chemistry Amyloid beta-Peptides - metabolism Amyloid β‐protein (Aβ) Amyloidosis Assembly Biosensing Techniques biosensor Chemical bonds Circular dichroism Dichroism Drug development Electron microscopy Full‐Length Papers Humans Hydrogen bonds Isoforms Morphology Neurodegenerative diseases Peptides Principal components analysis protein aggregation protein assembly Protein Folding Protein Isoforms protein misfolding Protein structure Proteins Raman spectroscopy Secondary structure Spectroscopy Spectrum analysis Spectrum Analysis, Raman - methods Substrates |
title | Surface enhanced Raman spectroscopy distinguishes amyloid Β‐protein isoforms and conformational states |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T07%3A14%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20enhanced%20Raman%20spectroscopy%20distinguishes%20amyloid%20%CE%92%E2%80%90protein%20isoforms%20and%20conformational%20states&rft.jtitle=Protein%20science&rft.au=Yu,%20Xinke&rft.date=2018-08&rft.volume=27&rft.issue=8&rft.spage=1427&rft.epage=1438&rft.pages=1427-1438&rft.issn=0961-8368&rft.eissn=1469-896X&rft_id=info:doi/10.1002/pro.3434&rft_dat=%3Cproquest_pubme%3E2032431088%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2111475487&rft_id=info:pmid/29700868&rfr_iscdi=true |