Surface enhanced Raman spectroscopy distinguishes amyloid Β‐protein isoforms and conformational states

Amyloid β‐protein (Aβ) self‐association is one process linked to the development of Alzheimer's disease (AD). Aβ peptides, including its most abundant forms, Aβ40 and Aβ42, are associated with the two predominant neuropathologic findings in AD, vascular and parenchymal amyloidosis, respectively...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Protein science 2018-08, Vol.27 (8), p.1427-1438
Hauptverfasser: Yu, Xinke, Hayden, Eric Y., Xia, Ming, Liang, Owen, Cheah, Lisa, Teplow, David B., Xie, Ya‐Hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Amyloid β‐protein (Aβ) self‐association is one process linked to the development of Alzheimer's disease (AD). Aβ peptides, including its most abundant forms, Aβ40 and Aβ42, are associated with the two predominant neuropathologic findings in AD, vascular and parenchymal amyloidosis, respectively. Efforts to develop therapies for AD often have focused on understanding and controlling the assembly of these two peptides. An obligate step in these efforts is the monitoring of assembly state. We show here that surface‐enhanced Raman spectroscopy (SERS) coupled with principal component analysis (PCA) readily distinguishes Aβ40 and Aβ42. We show further, through comparison of assembly dependent changes in secondary structure and morphology, that the SERS/PCA approach unambiguously differentiates closely related assembly stages not readily differentiable by circular dichroism spectroscopy, electron microscopy, or other techniques. The high discriminating power of SERS/PCA is based on the rich structural information present in its spectra, which comprises not only on interatomic resonances between covalently associated atoms and hydrogen bond interactions important in controlling secondary structure, but effects of protein orientation relative to the substrate surface. Coupled with the label‐free, single molecule sensitivity of SERS, the approach should prove useful for determining structure activity relationships, suggesting target sites for drug development, and for testing the effects of such drugs on the assembly process. The approach also could be of value in other systems in which assembly dependent changes in protein structure correlate with the formation of toxic peptide assemblies.
ISSN:0961-8368
1469-896X
DOI:10.1002/pro.3434