Improved Ribo-seq enables identification of cryptic translation events

PRICE uses Ribo-seq data to predict ORFs and start codons with high accuracy by computationally eliminating experimental noise and dissecting overlapping translation events. Ribosome profiling has been used to predict thousands of short open reading frames (sORFs) in eukaryotic cells, but it suffers...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature methods 2018-05, Vol.15 (5), p.363-366
Hauptverfasser: Erhard, Florian, Halenius, Anne, Zimmermann, Cosima, L'Hernault, Anne, Kowalewski, Daniel J, Weekes, Michael P, Stevanovic, Stefan, Zimmer, Ralf, Dölken, Lars
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:PRICE uses Ribo-seq data to predict ORFs and start codons with high accuracy by computationally eliminating experimental noise and dissecting overlapping translation events. Ribosome profiling has been used to predict thousands of short open reading frames (sORFs) in eukaryotic cells, but it suffers from substantial levels of noise. PRICE ( https://github.com/erhard-lab/price ) is a computational method that models experimental noise to enable researchers to accurately resolve overlapping sORFs and noncanonical translation initiation. We experimentally validated translation using major histocompatibility complex class I (MHC I) peptidomics and observed that sORF-derived peptides efficiently enter the MHC I presentation pathway and thus constitute a substantial fraction of the antigen repertoire.
ISSN:1548-7091
1548-7105
DOI:10.1038/nmeth.4631