The effect of hyperthermia on the DNA damage response induced by γ-rays, as determined through in situ cell tracking

Hyperthermia (HT) acts as a cancer treatment by direct cell killing, radiosensitization, and promotion of tumor reoxygenation. The sensor proteins of the DNA damage response (DDR) are the direct targets of HT. However, the spatiotemporal properties of sensor proteins under HT are still unclear. Ther...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of radiation research 2018-09, Vol.59 (5), p.577-582
Hauptverfasser: Fu, Qibin, Wang, Jing, Huang, Tuchen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hyperthermia (HT) acts as a cancer treatment by direct cell killing, radiosensitization, and promotion of tumor reoxygenation. The sensor proteins of the DNA damage response (DDR) are the direct targets of HT. However, the spatiotemporal properties of sensor proteins under HT are still unclear. Therefore, investigating the impact of HT on sensor proteins is of great importance. In the present study, the human fibrosarcoma cell line HT1080 stably transfected with 53BP1-GFP [the DDR protein 53BP1 fused to green fluorescent protein (GFP)] was used to investigate the real-time cellular response to DNA double-strand breaks (DSBs) induced by γ-rays. Using live-cell imaging combined with HT treatment, the spatiotemporal properties of the 53BP1 protein were directly monitored and quantitatively studied. We found that HT could delay and decrease the formation of 53BP1 ionizing radiation-induced foci (IRIF). Moreover, through the in situ tracking of individual IRIF, it was found that HT resulted in more unrepaired IRIF over the period of observation compared with IR alone. Additionally, the unrepaired IRIF had a larger area, higher intensity, and slower repair rate. Indeed, almost every cell treated with HT had unrepaired IRIF, and the majority of these IRIF increased in area individually, while the rest increased in area by the merging of adjacent IRIF. In summary, our study demonstrated that HT could perturb the primary event in the DDR induced by IR, and this may have important implications for cancer treatment and heat radiosensitization.
ISSN:0449-3060
1349-9157
DOI:10.1093/jrr/rry057