Increased MALAT1 expression contributes to cisplatin resistance in non-small cell lung cancer

Cisplatin-based chemotherapy is commonly used for the clinical treatment of patients with non-small cell lung cancer (NSCLC). However, the anti-tumor efficacy of cisplatin is limited by poor clinical response and the development of chemoresistance. At present, the underlying mechanism for cisplatin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncology letters 2018-10, Vol.16 (4), p.4821-4828
Hauptverfasser: Cui, Yong, Li, Guanlong, Zhang, Xin, Dai, Fangfang, Zhang, Rongxiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cisplatin-based chemotherapy is commonly used for the clinical treatment of patients with non-small cell lung cancer (NSCLC). However, the anti-tumor efficacy of cisplatin is limited by poor clinical response and the development of chemoresistance. At present, the underlying mechanism for cisplatin resistance remains unclear. In the present study, it was identified that metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), a long non-coding RNA that has been demonstrated to function as an oncogene, was increased in tumor tissues from patients with cisplatin-resistant NSCLC. In addition, the MALAT1 level was increased in A549rCDDP cells compared with the parental A549 cells. Silencing of MALAT1 sensitized A549rCDDP cells to cisplatin treatment, while overexpression of MALAT1 in A549 cells decreased their sensitivity towards cisplatin. Through analysis of the gene expression in patient samples, a decrease in miR-145 and an increase in Kruppel-like factor 4 (KLF4) in tumor tissues compared with adjacent normal tissues was observed. A negative association between MALAT1 and miR-145 was also identified in A549 cells and A549rCDDP cells. Furthermore, reverse transcription quantitative polymerase chain reaction and western blotting identified that KLF4 was positively and negatively regulated by MALAT1 and miR-145, respectively. The direct regulatory association between MALAT1 and miR-145 and the target gene KLF4 was additionally confirmed using a luciferase reporter assay. Knockdown of MALAT1 reversed cisplatin resistance in A549rCDDP cells. Taken together, these data indicated that MALAT1 decreased the sensitivity of NSCLC to cisplatin via the regulation of miR-145 and KLF4.
ISSN:1792-1074
1792-1082
DOI:10.3892/ol.2018.9293