C4 photosynthesis in C3 rice: a theoretical analysis of biochemical and anatomical factors
Engineering C4 photosynthesis into rice has been considered a promising strategy to increase photosynthesis and yield. A question that remains to be answered is whether expressing a C4 metabolic cycle into a C3 leaf structure and without removing the C3 background metabolism improves photosynthetic...
Gespeichert in:
Veröffentlicht in: | Plant, cell and environment cell and environment, 2017-01, Vol.40 (1), p.80-94 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Engineering C4 photosynthesis into rice has been considered a promising strategy to increase photosynthesis and yield. A question that remains to be answered is whether expressing a C4 metabolic cycle into a C3 leaf structure and without removing the C3 background metabolism improves photosynthetic efficiency. To explore this question, we developed a 3D reaction diffusion model of bundle‐sheath and connected mesophyll cells in a C3 rice leaf. Our results show that integrating a C4 metabolic pathway into rice leaves with a C3 metabolism and mesophyll structure may lead to an improved photosynthesis under current ambient CO2 concentration. We analysed a number of physiological factors that influence the CO2 uptake rate, which include the chloroplast surface area exposed to intercellular air space, bundle‐sheath cell wall thickness, bundle‐sheath chloroplast envelope permeability, Rubisco concentration and the energy partitioning between C3 and C4 cycles. Among these, partitioning of energy between C3 and C4 photosynthesis and the partitioning of Rubisco between mesophyll and bundle‐sheath cells are decisive factors controlling photosynthetic efficiency in an engineered C3–C4 leaf. The implications of the results for the sequence of C4 evolution are also discussed.
A 3D two‐cell reaction diffusion model was developed to explore the photosynthetic efficiency of the C4 metabolic cycle in the anatomical and biochemical background of a C3 leaf. Our results show that integrating a C4 metabolic pathway into rice leaves may lead to an improved photosynthesis under current ambient CO2 concentrations. Partitioning of energy between C3 and C4 photosynthesis and the partitioning of Rubisco between mesophyll and bundle‐sheath cells are decisive factors controlling photosynthetic efficiency in an engineered C3–C4 leaf. |
---|---|
ISSN: | 0140-7791 1365-3040 |
DOI: | 10.1111/pce.12834 |