The role of the paravertebral ganglia in human sympathetic neural discharge patterns

Key Points The mechanisms affecting recruitment patterns of postganglionic sympathetic nerves remain unclear. The divergent and convergent preganglionic innervation patterns of postganglionic neurons and the presence of differently sized postganglionic nerves suggest that the ganglia may participate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of physiology 2018-09, Vol.596 (18), p.4497-4510
Hauptverfasser: Klassen, Stephen A., Limberg, Jacqueline K., Baker, Sarah E., Nicholson, Wayne T., Curry, Timothy B., Joyner, Michael J., Shoemaker, J. Kevin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Key Points The mechanisms affecting recruitment patterns of postganglionic sympathetic nerves remain unclear. The divergent and convergent preganglionic innervation patterns of postganglionic neurons and the presence of differently sized postganglionic nerves suggest that the ganglia may participate in modifying the discharge patterns of single sympathetic postganglionic neurons innervating the skeletal muscle circulation. Whether the ganglia affect the ordered behaviour of varying sized postganglionic sympathetic neurons in humans has not been studied. Trimethaphan infusion produced an ordered pattern of action potential (AP) de‐recruitment whereby the firing of larger, low probability APs present at baseline was abolished first, followed by progressive decreased probability of smaller APs. Although integrated sympathetic bursts were no longer detected after several minutes of trimethaphan, firing of the smallest APs was detected. These data suggest the ganglia affect the distribution of firing probabilities exhibited by differently sized sympathetic neurons. The ganglia may contribute to sympathetic neural emission patterns involved in homeostatic regulation. Do the ganglia contribute to the ordered behaviour of postganglionic neuronal discharge within the sympathetic nervous system? To further understand the functional organization of the sympathetic nervous system we employed the microneurographic approach to record muscle sympathetic nerve activity (MSNA) and a continuous wavelet transform to study postganglionic action potential (AP) behaviour during nicotinic blockade at the ganglia (trimethaphan camsylate, 1–7 mg min−1) in seven females (37 ± 5 years). Trimethaphan elicited a progressive reduction in sympathetic outflow characterized by fewer integrated bursts with decaying amplitude. Underlying trimethaphan‐mediated attenuations in integrated MSNA were reductions in AP incidence (186 ± 101 to 29 ± 31 AP (100 beats)−1) and AP content per integrated burst (7 ± 2 to 3 ± 1 APs burst−1) (both P < 0.01) in the final minute of detectable bursting activity in the trimethaphan condition, compared to baseline. We observed an ordered de‐recruitment of larger to smaller AP clusters active at baseline (14 ± 3 to 8 ± 2 active AP clusters, P < 0.01). Following cessation of integrated bursts in the trimethaphan condition, the smallest 6 ± 2 sympathetic AP clusters persisted to fire in an asynchronous pattern (49 ± 41 AP (100 beats)−1) in all participants. Valsalv
ISSN:0022-3751
1469-7793
1469-7793
DOI:10.1113/JP276440