Junction-free Flat Copper Nanofiber Network-based Transparent Heater with High Transparency, High Conductivity, and High Temperature

Transparent conducting electrodes (TCE) are widely used in a variety of applications including displays, light-emitting diodes (LEDS), and solar cells. An important factor in TCE design is active control of the sheet resistance and transparency; as these are inversely proportional, it is essential t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2018-09, Vol.8 (1), p.13581-8, Article 13581
Hauptverfasser: Kim, Geon Hwee, Shin, Jung Hwal, An, Taechang, Lim, Geunbae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Transparent conducting electrodes (TCE) are widely used in a variety of applications including displays, light-emitting diodes (LEDS), and solar cells. An important factor in TCE design is active control of the sheet resistance and transparency; as these are inversely proportional, it is essential to develop a technology that can maintain high transparency, while actively controlling sheet resistance, for a range of applications. Here, a nanofiber network was fabricated based on direct electrospinning onto a three-dimensional (3-D) complex substrate; flat metal electrodes without junction resistance were produced using heat treatment and electroless deposition. The fabricated transparent electrode exhibited a transparency of over 90% over the entire visible light range and a sheet resistance of 4.9 ohms/sq. Adhesion between the electrode and substrate was superior to other electrospinning-based transparent electrodes. The performance of the transparent electrode was verified by measurements taken while using the electrode as a heater; a maximum temperature of 210 °C was achieved. The proposed copper nanofiber-based heater electrode offers the advantages of transparency as well as application to complex 3-D surfaces.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-018-32045-6