ΔF508-CFTR Modulator Screen Based on Cell Surface Targeting of a Chimeric Nucleotide Binding Domain 1 Reporter
The most common cystic fibrosis–causing mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) is deletion of phenylalanine at residue 508 (∆F508). The ∆F508 mutation impairs folding of nucleotide binding domain 1 (NBD1) and interfacial interactions of NBD1 and the membrane spann...
Gespeichert in:
Veröffentlicht in: | SLAS discovery 2018-09, Vol.23 (8), p.823-831 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The most common cystic fibrosis–causing mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) is deletion of phenylalanine at residue 508 (∆F508). The ∆F508 mutation impairs folding of nucleotide binding domain 1 (NBD1) and interfacial interactions of NBD1 and the membrane spanning domains. Here, we report a domain-targeted screen to identify ∆F508-CFTR modulators that act on NBD1. A biochemical screen for ΔF508-NBD1 cell surface expression was done in Madin–Darby canine kidney cells expressing a chimeric reporter consisting of ΔF508-NBD1, the CD4 transmembrane domain, and an extracellular horseradish peroxidase (HRP) reporter. Using a luminescence readout of HRP activity, the screen was robust with a Z′ factor of 0.7. The screening of ~20,000 synthetic small molecules allowed the identification of compounds from four chemical classes that increased ∆F508-NBD1 cell surface expression by up to 4-fold; for comparison, a 12-fold increased cell surface expression was found for a wild-type NBD1 chimera. While the compounds were inactive as correctors of full-length ΔF508-CFTR, several carboxamide-benzothiophenes had potentiator activity with low micromolar EC50. Interestingly, the potentiators did not activate G551D or wild-type CFTR. Our results provide a proof of concept for a cell-based NBD1 domain screen to identify ∆F508-CFTR modulators that target the NBD1 domain. |
---|---|
ISSN: | 2472-5552 2472-5560 |
DOI: | 10.1177/2472555218763310 |